ارتباط مقیاس‌های آسایش حرارتی با مولفه‌های فیزیکی - محیطی؛ سنجش موردی: ساختمان مدیریت دانشگاه شیراز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر دکتری معماری، دانشگاه تهران، پردیس بین‌الملل کیش، ایران

2 استاد معماری، پردیس هنرهای زیبا، دانشگاه تهران، تهران، ایران

3 استاد روانشناسی، دانشکده روانشناسی، دانشگاه شیراز، شیراز، ایران

چکیده

مطالعات آسایش حرارتی از دیدگاه­های متفاوتی قابل بحث است. سازگاری حرارتی روند تدریجی تطابق با شرایط و پاسخ به محرک­های حرارتی است که در سه دسته سازگاری فیزیکی، فیزیولوژیکی و روانی طبقه­بندی می­گردد. بنابراین آسایش حرارتی صرفا تحت تاثیر مولفه‌های اقلیمی نبوده و متغییرهای دیگری بر آن اثرگذارند. به همین دلیل تحقیقات متعددی جهت تعیین مولفه­ها و میزان اثر آنها تاکنون انجام شده­است. در این پژوهش با هدف شناسایی تاثیر همزمان مولفه­های فیزیکی و محیطی، مطالعه­ای میدانی در ساختمان اداری در شهر شیراز انجام شده­است. مولفه­های محیطی شامل دمای خشک، دمای کروی، دمای کروی مرطوب و رطوبت نسبی است که در فضای داخلی و خارجی ثبت شده­اند. مولفه­­های فیزیکی نیز شامل دید به اطراف، موقعیت مکانی، وضعیت بازشوها، سطح آلودگی صوتی، وضعیت روشنایی و چیدمان فضایی است. فرایند تحقیق میدانی شامل سه بخش توزیع پرسشنامه، مشاهده و ثبت داده­های آب­و­هوایی با استفاده از دیتالاگر است. مطالعه در مدت زمان چهار روز کاری در فصل زمستان انجام شده­است. نتایج بر روی 108 نفر کارمند در فصل زمستان نشان می­دهد، از میان مولفه­های محیطی بیشترین اثرگذاری بر ادراک حرارتی فرد به رطوبت نسبی وابسته است. تاثیر همزمان مولفه­های فیزیکی - محیطی نیز نشان می­دهد علاوه بر دما و رطوبت نسبی هوای داخل، وضعیت بازشوها و موقعیت مکانی فرد نیز اثرگذاری قابل توجهی بر احساس حرارتی فرد دارند. براساس نتایج مقیاس احساس حرارتی توسط مولفه­های فیزیکی - محیطی و مقیاس ترجیح حرارتی عمدتا توسط مولفه­های محیطی قابلیت پیش­بینی داشته­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Relationship between Thermal Comfort Scales and Physical-Environmental Components; a Case Study of Shiraz University Administration Building

نویسندگان [English]

  • Bahareh Bannazadeh 1
  • Shahin Headari 2
  • Habib Hadianfard 3
1 PhD Candidate, School of Architecture, Tehran University, Kish International Complex, Kish, Iran
2 Professor, School of Architecture, Tehran University, Tehran, Iran
3 Professor, Clinical Psychology Department, Shiraz University, shiraz, Iran
چکیده [English]

Studies of thermal comfort can be discussed from different perspectives with a variety of objectives. Thermal adaptation is a gradual process of adapting to conditions and responding to thermal stimuli, which are classified into three categories including physical, physiological and psychological adaptations. Therefore, thermal comfort is not simply influenced by climate components; certain other variables affect it too. In this regard, several studies have been carried out to determine the effects of different components. The purpose of this study is to identify the simultaneous effect of physical and environmental components in the administration building of Shiraz University. The environmental components included air temperature, globe temperature, Wet Bulb Globe temperature and relative humidity recorded indoors and outdoors. The physical components included the surrounding view, location of users, windows and doors status, spatial layout level of noise pollution and light conditions. The field study consisted of three parts: distribution of questionnaires, observation and recording of weather data using a data logger. The questionnaires helped to collect thermal responses of the participants based on different scales such as thermal sensation, thermal comfort, thermal pleasure, thermal preferences, thermal acceptance and overall comfort. During observation, the researchers recorded the status of each environmental component. It was a Mixed-Mode case study of the main administration building of Shiraz University located on the northern side of the city of Shiraz, Iran, at 52.52°N latitude and 29.63°E longitude and the altitude of 1590 meters above sea level. The building has a northwest-southeast orientation in two blocks of seven and ten stories. The field part of the study was conducted in January, 2019 for four consecutive days from 8 am to 12 pm.  The results on 110 employees in winter show that, among the physical components, relative humidity has the most influence on the individuals' thermal perception. The simultaneous impact of the physical-environmental components also indicates that, in addition to the indoor air temperature and relative humidity, the condition of the openings has a significant effect on the individuals' thermal sensation. In this study, the temperature preferences scale was predicted by environmental components, and thermal sensation could be predicted by the physical-environmental components.

کلیدواژه‌ها [English]

  • Thermal adaption
  • Thermal comfort
  • Physical-environmental component
  • Office building
  • Shiraz
-       احمدی, محمود،, عاشورلو, د., نارنگی­فرد, م. (1394). تحلیل فضایی دمای شهر شیراز در فصول گرم و سرد با به کارگیری تحلیل های آماری و تصایور ماهواره ای. فصلنامه تحقیقات جغرافیایی, 2, 147–160.
-       احمدی, محمود،, عاشورلو, د., نارنگی­فرد, م. ن. (1391). تغییرات زمانی- مکانی الگوهای حرارتی و کاربری شهر شیراز با استفاده از داده­های سنجش از دور و Gis ایران, 4, 55–68.
-  Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2018). The Impact of the Thermal Comfort Models on the Prediction of Building Energy Consumption. Sustainability, 10(10), 3609–3626. 9
-  Antoniadou, P., & Papadopoulos, A. M. (2017). Occupants ’ thermal comfort : State of the art and the prospects of personalized assessment in office buildings. Energy & Buildings.
-  Auliciems, A. (1981). Towards a psycho-physiological model of thermal perception. International Journal of Biometeorology, 25(2), 109–122.
-  Brager, G. S., & De Dear, R. (1998). Thermal adaptation in the built environment : a literature review. Energy and Buildings, 27, 83–96.
-  Brien, W. O., & Gunay, H. B. (2014). The contextual factors contributing to occupants ’ adaptive comfort behaviors in of fi ces e A review and proposed modeling framework. Building  &Environment, 77, 77–87.
-  Candido, C., & Dear, R. De. (2012). From thermal boredom to thermal pleasure: a brief literature review. Ambiente Construído, 12(1), 81–90.
-  Cheung, P. K., & Jim, C. Y. (2017). determination and application of outdoor thermal benchmarks. Building and Environment.
-  Coccolo, S., Kämpf, J., Scartezzini, J.-L., & Pearlmutter, D. (2016). Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 33–57.
-  d’Ambrosio Alfano, F. R., Dell’Isola, M., Palella, B. I., Riccio, G., & Russi, A. (2013). On the measurement of the mean radiant temperature and its influence on the indoor thermal environment assessment. Building and Environment, 63, 79–88.
-  De Dear, R., Brager, G., & Cooper, D. (1998). Developing an Adaptive Model of Thermal Comfort and Preference. ASHRAE Transactions (Vol. 104).
-  De Dear, R. J., Akimoto, T., Arens, E. A., Brager, G., Candido, C., Cheong, K. W. D., & Toftum, J. (2013). Progress in thermal comfort research over the last twenty years, 442–461.
-  Djamila, H. (2017). Indoor thermal comfort predictions : Selected issues and trends. Renewable and Sustainable Energy Reviews, 74(January), 569–580.
-  Djongyang, N., Tchinda, R., & Njomo, D. (2010). Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews, 14(9), 2626–2640.
-  Eliasson, I., Knez, I., Westerberg, U., Thorsson, S., & Lindberg, F. (2007). Climate and behaviour in a Nordic city. Landscape and Urban Planning, 82(1–2), 72–84.
-  Forgiarini, R., Kim, J., Dear, R. De, & Ghisi, E. (2018). Associations of occupant demographics , thermal history and obesity variables with their thermal comfort in air-conditioned and mixed-mode ventilation o ffi ce buildings. Building and Environment, 135(March), 1–9.
-  Frontczak, M., & Wargocki, P. (2011). Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46(4), 922–937.
-  Gunay, H. B., Brien, W. O., & Beausoleil-morrison, I. (2013). A critical review of observation studies , modeling , and simulation of adaptive occupant behaviors in of fi ces. Building & Environment, 70, 31–47.
-  Halawa, E., & Van Hoof, J. (2012). The adaptive approach to thermal comfort: A critical overview. Energy and Buildings, 51, 101–110.
-  Humphreys, M. A., Rijal, H. B., & Nicol, J. F. (2013). Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Building and Environment, 63, 40–55.
-  Humphreys, M., & Nicol, F. (1998). Understanding the adaptive approach to thermal comfort. ASHRAE Transactions, 991–1004.
-  Humphreys, M., & Nicol, J. F. (2018). Puzzles and paradoxes in adaptive comfort Michael. In WiNDSOR Conference, Rethinking Comfort (pp. 3–19).
-  Humphreys, Michael A., & Hancock, M. (2007). Do people like to feel “neutral”?. Exploring the variation of the desired thermal sensation on the ASHRAE scale. Energy and Buildings, 39(7), 867–874.
-  Humphreys, Michael A., Roaf, S., & Nicol, F. (2016). Adaptive Thermal Comfort: Foundations and Analysis.
-  Johnson, M. B., Iweka, A. C. O., & Adebamowo, M. (2018). Impact of physical characteristics on comfort and well-being in selected neighborhoods of metropolitan Lagos, Nigeria. In WiNDSOR Conference, Rethinking Comfort (p. 1140).
-  Kim, J., Zhou, Y., Schiavon, S., Raftery, P., & Brager, G. (2018). Personal comfort models : Predicting individuals ’ thermal preference using occupant heating and cooling behavior and machine learning. Building and Environment, 129(December 2017), 96–106.
-  Knez, I., & Thorsson, S. (2006). Influences of culture and environmental attitude on thermal , emotional and perceptual evaluations of a public square, 258–268.
-  Knez, I., & Thorsson, S. (2008). Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Building and Environment, 43(9), 1483–1490.
-  Korsavi, S. S., & Montazami, A. (2018). Adaptive Behaviours and Occupancy Patterns in UK Primary Schools: Impacts on Comfort and Indoor Quality. In WiNDSOR Conference, Rethinking Comfort.
-  Marino, C., Nucara, A., Peri, G., & Pudano, A. (2011). Aد algorithm for the assessment of subjective adaptive thermal comfort conditions based on multi-agent systems, (October).
-  Maykot, J. K., Rupp, R. F., & Ghisi, E. (2018). A field study about gender and thermal comfort temperatures in office buildings, 178, 254–264.
-  Mishra, A. K., & Ramgopal, M. (2013). Field studies on human thermal comfort — An overview. Building and Environment, 94–106.
-  Nicol, F., Humphreys, M., & Olesen, Bj. W. (2004). A stochastic approach to thermal comfort - Occupant behavior and energy use in buildings, (January).
-  Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34(6), 563–572.
-  Nicol, J. Fergus. (2011). Adaptive comfort. Building Research and Information, 39(2), 105–107.
-  Nicol, J. Fergus, & Roaf, S. (2017). Rethinking thermal comfort. Building Research & Information, 0(0), 1–5.
-  Nikolopoulou, M., & Lykoudis, S. (2006). Thermal comfort in outdoor urban spaces: Analysis across different European countries. Building and Environment, 41(11), 1455–1470.
-  Parkinson, T., de Dear, R., & Brager, G. (2020). Nudging the adaptive thermal comfort model. Energy and Buildings, 206(December 2019).
-  Rijal, H. B., Humphreys, M. A., & Nicol, J. F. (2017). Towards an adaptive model for thermal comfort in Japanese offices. Building Research & Information, 1–13.
-  Schweiker, M., Abdul-Zahra, A., André, M., Al-Atrash, F., Al-Khatri, H., Alprianti, R., & R., ... & Azadeh, M. (2019). The Scales Project, a cross-national dataset on the interpretation of thermal perception scales. Scientific Data, 6(1), 1–10.
-  Schweiker, Marcel, André, M., Al-Atrash, F., Al-Khatri, H., Alprianti, R. R., Alsaad, H., … Zomorodian, Z. S. (2020). Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe? Energy and Buildings, 211, 109761.
-  Schweiker, Marcel, Fuchs, X., Becker, S., Shukuya, M., Dovjak, M., Hawighorst, M., & Kolarik, J. (2017). Challenging the assumptions for thermal sensation scales. Building Research & Information, 45(5), 572–589.
-  Schweiker, Marcel, Huebner, G. M., Kingma, B. R. M., & Kramer, R. (2018). Drivers of diversity in human thermal perception – A review for holistic comfort models. Temperature, 5(4), 1–35.
-  Shooshtarian, S. (2015). Socio-economic Factors for the Perception of Outdoor Thermal Environments : Towards Socio-economic Factors for the Perception of Outdoor Thermal Environments : Towards Climate-sensitive Urban Design. Global Built Environment Review, 9, 39–53.
-  Taleghani, M., Tenpierik, M., Kurvers, S., & Van Den Dobbelsteen, A. (2013). A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 26, 201–215.
-  Taleghani, M., Tenpierik, M., Van Den Dobbelsteen, A., & De Dear, R. (2013). Energy use impact of and thermal comfort in different urban block types in the Netherlands. Energy and Buildings, 67, 166–175.
-  van Hoof, J., Schellen, L., Soebarto, V., Wong, J. K. W., & Kazak, J. K. (2017). Ten questions concerning thermal comfort and ageing. Building and Environment, 120, 123–133.
-  Wagner, A., & O’Brien, W. (2018). Occupant behaviour-centric building design and operation EBC Annex 79 October 2018 , updated after approval by IEA EBC Prepared by : Energy in Building and Communities Programme(EBC), (October).
-  Wang, Z., Dear, R. De, Luo, M., Lin, B., He, Y., & Ghahramani, A. (2018). Individual Difference in Thermal Comfort : A Literature Review. Building and Environment, 138(June), 181–193.
-  Wu, T., Cao, B., & Zhu, Y. (2018). A field study on thermal comfort and air-conditioning energy use in an office building in Guangzhou. Energy & Buildings, 168, 428–437.