- Abboushi, B, and Elzeyadi, I, Wymelenberg, K, Jacobsen, G. (2018), “Do visually interesting sunlight patterns impact occupants’ perceived glare?,” in IES Research Symposium 2018, Atlanta, GA, USA, p. 11.
- Abboushi, B., & Elzeyadi, I. (2018). The Relationship between Sunlight Pattern Geometry and Visual Comfort in Daylit Offices. In ARCC Conference Repository.
- Abboushi, B., Elzeyadi, I., Taylor, R., & Sereno, M. (2019). Fractals in architecture: The visual interest, preference, and mood response to projected fractal light patterns in interior spaces. Journal of Environmental Psychology, 61, 57-70.
- Abd-Alhamid, F., Kent, M., Bennett, C., Calautit, J., & Wu, Y. (2019). Develop an innovative method for visual perception evaluation in a physical-based virtual environment. Building and Environment, 106278.
- Amundadottir, M. L., Rockcastle, S., Khanie, M. S., & Andersen, M. (2017b). A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior. Building and Environment, 113, 5-
- Andersen, M. (2015). Unweaving the human response in daylighting design. Building and Environment, 91, 101-117.
- Baehr-Bruyère, J., Chamilothori, K., Vassilopoulos, A. P., Wienold, J., & Andersen, M. (2019). Shaping light to influence occupants’ experience of space: a kinetic shading system with composite materials. In Journal of Physics: Conference Series (Vol. 1343, No. 1, p. 012162). IOP Publishing
- Baker, D. H., & Graf, E. W. (2009). Natural images dominate in binocular rivalry. Proceedings of the National Academy of Sciences, 106(13), 5436-5441.
- Banaei, M., Hatami, J., Yazdanfar, A., & Gramann, K. (2017). Walking through architectural spaces: the impact of interior forms on human brain dynamics. Frontiers in human neuroscience, 11, 477.
- Bernat, E., Patrick, C. J., Benning, S. D., & Tellegen, A. (2006). Effects of picture content and intensity on affective physiological response. Psychophysiology, 43(1), 93-103.
- Boubekri, M., Hull, R. B., and Boyer, L. L. (1991). Impact of Window Size and Sunlight Penetration on Office Workers’ Mood and Satisfaction A Novel Way of Assessing Sunlight. Environment and Behavior, 23(4):474–493.
- Boyce, P. R. (2014). Human factors in lighting. Crc Press.
- Bülow-Hübe, H. (1995). Subjective reactions to daylight in rooms: effect of using low-emittance coatings on windows. International Journal of Lighting Research and Technology, 27(1), 37-44.
- Cauwerts, C. (2013). Influence of presentation modes on visual perceptions of daylit spaces. Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium.
- Cauwerts, C., & Piderit, M. B. (2018). Application of High-Dynamic Range Imaging Techniques in Architecture: A Step toward High-Quality Daylit Interiors?. Journal of Imaging, 4(1), 19.
- Cetegen, D., Veitch, J., & Newsham, G. (2008). View size and office illuminance effects on employee satisfaction. Proceedings of Balkan light, 2008, 242-252.
- Cha, S. H., Koo, C., Kim, T. W., & Hong, T. (2019). Spatial perception of ceiling height and type variation in immersive virtual environments. Building and Environment, 163, 106285.
- Chamilothori, K. (2019). Perceptual effects of daylight patterns in architecture (No. THESIS). EPFL.
- Chamilothori, K., Chinazzo, G., Rodrigues, J., Dan-Glauser, E. S., Wienold, J., & Andersen, M. (2019). Subjective and physiological responses to façade and sunlight pattern geometry in virtual reality. Building and Environment, 150, 144-155.
- Chamilothori, K., Wienold, J., & Andersen, M. (2016). Daylight patterns as a means to influence the spatial ambiance: a preliminary study. In Proceedings of the 3rd International Congress on Ambiances (No. CONF).
- Chamilothori, K., Wienold, J., & Andersen, M. (2018a). Adequacy of immersive virtual reality for the perception of daylit spaces: Comparison of real and virtual environments. Leukos, 1-24.
- Chamilothori, K., Wienold, J., & Andersen, M. (2018b). Façade design and our experience of space: the joint impact of architecture and daylight on human perception and physiological responses. In Proceedings of the Light Symposium 2018 (No. CONF).
- Chen, Y., Cui, Z., & Hao, L. (2019). Virtual reality in lighting research: Comparing physical and virtual lighting environments. Lighting Research & Technology, 51(6), 820-837.
- Ching, F. D. (2007). Architecture: Form, Space, & Order. John Wiley & Sons.
- Corrodi, M., & Spechtenhauser, K. (2008). Illuminating: Natural light in residential architecture.
- Dan-Glauser, E. S., & Scherer, K. R. (2011). The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance. Behavior research methods, 43(2), 468.
- Ekman, P. E., & Davidson, R. J. (1994). The nature of emotion: Fundamental questions. Oxford University Press.
- Ergan, S., Shi, Z., & Yu, X. (2018). Towards quantifying human experience in the built environment: A crowdsourcing based experiment to identify influential architectural design features. Journal of Building Engineering, 20, 51-59.
- Erkan, İ. (2018). Examining wayfinding behaviours in architectural spaces using brain imaging with electroencephalography (EEG). Architectural Science Review, 61(6), 410-428.
- Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Josa a, 4(12), 2379-2394.
- Figner, B., & Murphy, R. O. (2010). Using skin conductance in judgment and decision making research. A Handbook of Process Tracing Methods for Decision Research: A Critical Review and User's Guide, 163-84
- Friedenberg, J., & Liby, B. (2016). Perceived beauty of random texture patterns: A preference for complexity. Acta psychologica, 168, 41-49.
- Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol., 59, 167-192.
- Heydarian, A., Carneiro, J. P., Gerber, D., Becerik-Gerber, B., Hayes, T., & Wood, W. (2015). Immersive virtual environments versus physical built environments: A benchmarking study for building design and user-built environment explorations. Automation in Construction, 54, 116-126.
- Heydarian, A., Pantazis, E., Wang, A., Gerber, D., & Becerik-Gerber, B. (2017). Towards user centered building design: Identifying end-user lighting preferences via immersive virtual environments. Automation in Construction, 81, 56-66.
- Higuera-Trujillo, J. L., Maldonado, J. L. T., & Millán, C. L. (2017). Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360 Panoramas, and Virtual Reality. Applied ergonomics, 65, 398-409.
- Holl S. (2011). Color Light Time. Zurich: Lars Muller Publishers.
- Houser, K. W., & Tiller, D. K. (2003). Measuring the subjective response to interior lighting: paired comparisons and semantic differential scaling. Lighting Research & Technology, 35(3), 183-195.
- Kleindienst, S., Bodart, M., & Andersen, M. (2008). Graphical representation of climate-based daylight performance to support architectural design. Leukos, 5(1), 39-61.
- Krier, R. (1983). Elements of architecture.st. Martins Press.
- Kuliga, S. F., Thrash, T., Dalton, R. C., & Hölscher, C. (2015). Virtual reality as an empirical research tool—Exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems, 54, 363-375.
- Lang, P. J. (1995). The emotion probe: studies of motivation and attention. American psychologist, 50(5), 372.
- Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology, 30(3), 261-273.
- Le, A. T., Payne, J., Clarke, C., Kelly, M. A., Prudenziati, F., Armsby, E., ... & Wilkins, A. J. (2017). Discomfort from urban scenes: Metabolic consequences. Landscape and Urban Planning, 160, 61-68.
- Leite, S., Dias, M. S., Eloy, S., Freitas, J., Marques, S., Pedro, T., & Ourique, L. (2019). Physiological Arousal Quantifying Perception of Safe and Unsafe Virtual Environments by Older and Younger Adults. Sensors, 19(11), 2447.
- Mahdavi, A., & Eissa, H. (2002). Subjective evaluation of architectural lighting via computationally rendered images. Journal of the illuminating Engineering Society, 31(2), 11-20.
- Moscoso, C., Chamilothori, K., Wienold, J., Andersen, M., & Matusiak, B. (2020). Window Size Effects on Subjective Impressions of Daylit Spaces: Indoor Studies at High Latitudes Using Virtual Reality. LEUKOS, 1-23.
- Moscoso, C., Matusiak, B., & Svensson, U. P. (2015a). Impact of window size and room reflectance on the perceived quality of a room. Journal of Architectural and Planning Research, 294-306.
- Moscoso, C., Matusiak, B., Svensson, U. P., & Orleanski, K. (2015b). Analysis of stereoscopic images as a new method for daylighting studies. ACM Transactions on Applied Perception (TAP), 11(4), 1-13.
- Newsham, G. R., Cetegen, D., Veitch, J. A., & Whitehead, L. (2010). Comparing lighting quality evaluations of real scenes with those from high dynamic range and conventional images. ACM Transactions on Applied Perception (TAP), 7(2), 13.
- Newsham, G. R., Richardson, C., Blanchet, C., & Veitch, J. A. (2005). Lighting quality research using rendered images of offices. Lighting Research & Technology, 37(2), 93-112.
- Norwood, M. F., Lakhani, A., Maujean, A., Zeeman, H., Creux, O., & Kendall, E. (2019). Brain activity, underlying mood and the environment: A systematic review. Journal of Environmental Psychology, 101321.
- Omidfar, a., Chamilothori, K. (2019). Influence of Subjective Impressions of a Space on Brightness Satisfaction: an Experimental Study in Virtual Reality, Proceedings of Simulation For Architecture and Urban Design (SimAUD).
- Omidfar, A., Niermann, M., & Groat, L. N. (2015). The use of environmental aesthetics in subjective evaluation of daylight quality in office buildings. In Proceedings of IES Annual Conference.
- Pallasmaa, J. (2012). The eyes of the skin: Architecture and the senses. John Wiley & Sons.
- Parpairi, K., Baker, N. V., Steemers, K. A., and Compagnon, R. (2002). The Luminance Differences index: a new indicator of user preferences in daylit spaces. Lighting Research & Technology, 34(1):53–66.
- Párraga, C. A., Brelstaff, G., Troscianko, T., & Moorehead, I. R. (1998). Color and luminance information in natural scenes. JOSA A, 15(3), 563-569.
- Penacchio, O., & Wilkins, A. J. (2015). Visual discomfort and the spatial distribution of Fourier energy. Vision research, 108, 1-7.
- Penacchio, O., Otazu, X., Wilkins, A. J., & Harris, J. (2015). Uncomfortable images prevent lateral interactions in the cortex from providing a sparse code. Perception, 44(S1), 67-68.
- Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In Theories of emotion (pp. 3-33). Academic press.
- Rizzi, A., Algeri, T., Medeghini, G., & Marini, D. (2004). A proposal for contrast measure in digital images. In Conference on colour in graphics, imaging, and vision (Vol. 2004, No. 1, pp. 187-192). Society for Imaging Science and Technology.
- Rockcastle, S. F. (2017). Perceptual Dynamics of Daylight in Architecture (No. THESIS). EPFL.
- Rockcastle, S. F., Chamilothori, K., & Andersen, M. (2017c). An Experiment in Virtual Reality to Measure Daylight-Driven Interest in Rendered Architectural Scenes (No. CONF).
- Rockcastle, S., & Andersen, M. (2014). Measuring the dynamics of contrast & daylight variability in architecture: A proof-of-concept methodology. Building and Environment, 81, 320-333.
- Rockcastle, S., Ámundadóttir, M. L., & Andersen, M. (2017a). A simulation-based workflow to assess human-centric daylight performance. In Proceedings of the Symposium on Simulation for Architecture and Urban Design (p. 3). Society for Computer Simulation International.
- Rockcastle, S., Ámundadóttir, M. L., & Andersen, M. (2017b). Contrast measures for predicting perceptual effects of daylight in architectural renderings. Lighting Research & Technology, 49(7), 882-903.
- Rockcastle, S., Ámundadóttir, M. L., & Andersen, M. (2018). OCUVIS: a web-based visualizer for simulated daylight performance. In Proceedings of the Symposium on Simulation for Architecture and Urban Design (p. 3). Society for Computer Simulation International.
- Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6), 1161.
- Russell, J. A., Ward, L. M., & Pratt, G. (1981). Affective quality attributed to environments: A factor analytic study. Environment and behavior, 13(3), 259-288.
- Ruta, N., Mastandrea, S., Penacchio, O., Lamaddalena, S., & Bove, G. (2019). A comparison between preference judgments of curvature and. sharpness in architectural façades. Architectural Science Review, 62(2), 171-181.
- Shin, Y. B., Woo, S. H., Kim, D. H., Kim, J., Kim, J. J., & Park, J. Y. (2015). The effect on emotions and brain activity by the direct/indirect lighting in the residential environment. Neuroscience letters, 584, 28-32.
- Spehar, B., Wong, S., van de Klundert, S., Lui, J., Clifford, C. W. G., & Taylor, R. (2015). Beauty and the beholder: the role of visual sensitivity in visual preference. Frontiers in human neuroscience, 9, 514.
- Steane, M. A. (2012). The Architecture of Light: Recent approaches to designing with natural light. Routledge.
- Stokkermans, M., Vogels, I., de Kort, Y., & Heynderickx, I. (2018). A Comparison of Methodologies to Investigate the Influence of Light on the Atmosphere of a Space. Leukos, 14(3), 167-191.
- Tiller, D. K., & Veitch, J. A. (1995). Perceived room brightness: Pilot study on the effect of luminance distribution. International Journal of Lighting Research and Technology, 27(2), 93-101
- Van Den Wymelenberg, K. G. (2012). Evaluating human visual preference and performance in an office environment using luminance-based metrics. University of Washington.
- Van Erp, T. (2008). The effects of lighting characteristics on atmosphere perception. Unpublished Master thesis for the Master’s degree program Human Technology Interaction, department of Eindhoven University of Technology.
- Veitch, J. A. (2001). Psychological processes influencing lighting quality. Journal of the Illuminating Engineering Society, 30(1), 124-140.
- Vogels, I. (2008). Atmosphere metrics. In Probing experience (pp. 25-41). Springer, Dordrecht.
- Wang, N. and Boubekri, M. (2010a). Design recommendations based on cognitive, mood and preference assessments in a sunlit workspace. Lighting Research & Technology, 43(1):55–72.
- Wang, N. and Boubekri, M. (2010b). Investigation of declared seating preference and measured cognitive performance in a sunlit room. Journal of Environmental Psychology, 30(2):226–238.
- Wilkins, A., Penacchio, O., & Leonards, U. (2018). The built environment and its patterns–a view from the vision sciences. Journal of Sustainable Design and Applied Research.
- Yin, J., Yuan, J., Arfaei, N., Catalano, P. J., Allen, J. G., & Spengler, J. D. (2020). Effects of biophilic indoor environment on stress and anxiety recovery: A between-subjects experiment in virtual reality. Environment International, 136, 105427.
- Wymelenberg K, Inanici M. A study of luminance distribution patterns and occupant preference in daylit offices. (2009). In: PLEA2009-26th
- Zou, Z., & Ergan, S. (2019a). A Framework towards Quantifying Human Restorativeness in Virtual Built Environments. arXiv preprint arXiv:1902.05208.
- Zou, Z., & Ergan, S. (2019b). Where Do We Look? An Eye-Tracking Study of Architectural Features in Building Design. In Advances in Informatics and Computing in Civil and Construction Engineering (pp. 439-446). Springer, Cham.
- Zumthor, P. (2006). Atmospheres: architectural environments, surrounding objects. Birkhauser Architecture.