کارایی ادراکی نور روز: یک مطالعه مروری ساختاریافته از نقش الگوهای انتشار نور روز بر ادراکات ساکنان در فضاهای داخلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری معماری، دانشکده مهندسی معماری و شهرسازی، دانشگاه تربیت دبیر شهید رجایی تهران، ایران

2 استادیار دانشکده معماری، دانشکده مهندسی معماری و شهرسازی، دانشگاه تربیت دبیر شهید رجایی تهران، ایران

چکیده

کارایی ادراکی نور روز معطوف به ارزیابی نور روز در سطح چشم انسان و رابطۀ آن با نیازهای روان­شناختی (حالات و روحیات) و به­تبع آن تجربه فضایی ساکنان است که خود از معیارهای معمارانه جداره­های نور گذر و یا نمای ساختمان که الگوهای متفاوتی از انتشار نور در فضای داخلی را شکل می­دهند، تأثیر می­پذیرد؛ علی‌رغم این تأثیر­پذیری، به نظر می­­رسد معماران از اثرات ادراکیِ این الگوها در فضای داخلی ساختمان­ها به­شکل نظام­مند، روشن و دقیق مطلع نیستند. این تحقیق با مرور ساختاریافته­ پژوهش­های پیشین؛ به­دنبال تبیین رابطه بین الگوهای متفاوت انتشار نور روزِ برآمده از مشخصه­های طراحی جداره­های نور گذر (متغیر مستقل) و ادراکات ساکنان (متغیر وابسته) در فضاهای داخلی و شناسایی روش­ها و ابزارهای قابل اتکا برای سنجش، کمی­سازی و پیش­بینی رابطه بین این دو و در نهایت تبیین خلاءهای پژوهشی مرتبط با موضوع تحقیق است. یافته­های این پژوهش نشان می­دهد که ادراکات افراد از طریق دو بعد خوشایندی و برانگیختگی احساسات قابل تبیین است که محققان جهت ارزیابی این دو بعد از روش­های متفاوت ارزیابی ذهنی مبتنی­بر استخراج داده­های خود­گزارشی از طریق ابزار پرسش­نامه و ارزیابی عینی بر پایه استخراج داده­های فیزیولوژیکی و مشاهده­ای برآمده از شبکه­های حسگر بدن انسان (BSN) در محیط واقعیت مجازی VR)) بهره برده­اند. همچنین یافته­ها نشان می­دهند که شاخص تضاد فضایی اصلاح­شده ((mSC برای سنجش تضاد تیرگی و روشنی، شاخص حجم تصویر فشرده­سازی شده در قالب JPEG و شاخص تشخیص میزان لبه PNG-PERIM8 جهت سنجش سطح پیچیدگی تصاویر، قابل اتکاترین شاخص­های کمیِ تصویر مبنا در پیش­بینی اثرات ادراکی نور روز و شاخص طیف دامنه فوریه دو بعدی FFT2)) در پیش­بینی اثرات ادراکیِ سایر محرک­های بصری هستند. در مجموع می­توان بیان داشت که دستاورد این تحقیق می‌تواند زمینه­ساز شکل­گیری طیف گسترده­ای از مطالعات مرتبط با موضوع پژوهش در آینده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Perceptual performance of daylight; a systematic review of the role of daylight patterns on occupants’ perceptions in interior spaces

نویسندگان [English]

  • Sohrab Rezaei 1
  • ali sharghi 2
1 Assistant Professor of Architecture, faculty of Architecture and Urban Planning, Shahid Rajaee Teacher Training University, Tehran, Iran
2 Assistant Professor of Architecture, faculty of Architecture and Urban Planning, Shahid Rajaee Teacher Training University, Tehran, Iran
چکیده [English]

The perceptual performance of daylight is focused on the assessment of daylight at the eye level and its relation to the psychological (perception, emotional state) needs of the occupants, which influenced by architectural elements that shape the way daylight enters the space, such as multilayered façade and perforated walls. However, it seems that the designers do not have a clear and systematic understanding of the physiological and psychological effects of these patterns in interior spaces.
 through a structured review of previous research, this paper seeks to identify, quantify and predict the relationship between daylight distribution patterns linked to architectural elements that shape the way daylight enters the space (independent variable) and occupants perceptions (dependent variable) in daylit spaces.
The findings showed that Human experience can be represented with two dimensions, valence and arousal. To explore these two dimentions,   subjective evaluations based on self reports using questionnaires, objective evaluations based on physiological data   and observations based on physically based rendering (PBR) in virtual reality (VR) environment have been carried out.  the results show that the best image-based computational measures of contrast in predicting perceptual effects of daylight are modified spatial contrast indicator (mSC) and the size of images compressed in JPEG format and PNG-PERIM8 edge detection indicator (for evaluating the complexity of images).for the evaluation of perceptual effects of other visual stimuli, two-dimensional Fourier amplitude spectrum metric (FFT2) is used.
In conclusion, the findings of this research can be the basis of a wide range of experimental research on this topic in the future.

کلیدواژه‌ها [English]

  • Daylight
  • perception
  • virtual reality
  • subjective evaluation
  • objective evaluation
-   Abboushi, B, and Elzeyadi, I, Wymelenberg, K, Jacobsen, G. (2018), “Do visually interesting sunlight patterns impact occupants’ perceived glare?,” in IES Research Symposium 2018, Atlanta, GA, USA, p. 11.
-   Abboushi, B., & Elzeyadi, I. (2018). The Relationship between Sunlight Pattern Geometry and Visual Comfort in Daylit Offices. In ARCC Conference Repository.
-   Abboushi, B., Elzeyadi, I., Taylor, R., & Sereno, M. (2019). Fractals in architecture: The visual interest, preference, and mood response to projected fractal light patterns in interior spaces. Journal of Environmental Psychology, 61, 57-70.
-   Abd-Alhamid, F., Kent, M., Bennett, C., Calautit, J., & Wu, Y. (2019). Develop an innovative method for visual perception evaluation in a physical-based virtual environment. Building and Environment, 106278.
-   Amundadottir, M. L., Rockcastle, S., Khanie, M. S., & Andersen, M. (2017b). A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior. Building and Environment, 113, 5-
-   Andersen, M. (2015). Unweaving the human response in daylighting design. Building and Environment, 91, 101-117.
-   Baehr-Bruyère, J., Chamilothori, K., Vassilopoulos, A. P., Wienold, J., & Andersen, M. (2019). Shaping light to influence occupants’ experience of space: a kinetic shading system with composite materials. In Journal of Physics: Conference Series (Vol. 1343, No. 1, p. 012162). IOP Publishing
-   Baker, D. H., & Graf, E. W. (2009). Natural images dominate in binocular rivalry. Proceedings of the National Academy of Sciences, 106(13), 5436-5441.
-   Banaei, M., Hatami, J., Yazdanfar, A., & Gramann, K. (2017). Walking through architectural spaces: the impact of interior forms on human brain dynamics. Frontiers in human neuroscience, 11, 477.
-   Bernat, E., Patrick, C. J., Benning, S. D., & Tellegen, A. (2006). Effects of picture content and intensity on affective physiological response. Psychophysiology, 43(1), 93-103.
-   Boubekri, M., Hull, R. B., and Boyer, L. L. (1991). Impact of Window Size and Sunlight Penetration on Office Workers’ Mood and Satisfaction A Novel Way of Assessing Sunlight. Environment and Behavior, 23(4):474–493.
-   Boyce, P. R. (2014). Human factors in lighting. Crc Press.
-   Bülow-Hübe, H. (1995). Subjective reactions to daylight in rooms: effect of using low-emittance coatings on windows. International Journal of Lighting Research and Technology, 27(1), 37-44.
-   Cauwerts, C. (2013). Influence of presentation modes on visual perceptions of daylit spaces. Université catholique de   Louvain (UCL), Louvain-la-Neuve, Belgium.
-   Cauwerts, C., & Piderit, M. B. (2018). Application of High-Dynamic Range Imaging Techniques in Architecture: A Step toward High-Quality Daylit Interiors?. Journal of Imaging, 4(1), 19.
-   Cetegen, D., Veitch, J., & Newsham, G. (2008). View size and office illuminance effects on employee satisfaction. Proceedings of Balkan light, 2008, 242-252.
-   Cha, S. H., Koo, C., Kim, T. W., & Hong, T. (2019). Spatial perception of ceiling height and type variation in immersive virtual environments. Building and Environment, 163, 106285.
-   Chamilothori, K. (2019). Perceptual effects of daylight patterns in architecture (No. THESIS). EPFL.
-   Chamilothori, K., Chinazzo, G., Rodrigues, J., Dan-Glauser, E. S., Wienold, J., & Andersen, M. (2019). Subjective and physiological responses to façade and sunlight pattern geometry in virtual reality. Building and Environment, 150, 144-155.
-   Chamilothori, K., Wienold, J., & Andersen, M. (2016). Daylight patterns as a means to influence the spatial ambiance: a preliminary study. In Proceedings of the 3rd International Congress on Ambiances (No. CONF).
-   Chamilothori, K., Wienold, J., & Andersen, M. (2018a). Adequacy of immersive virtual reality for the perception of daylit spaces: Comparison of real and virtual environments. Leukos, 1-24.
-   Chamilothori, K., Wienold, J., & Andersen, M. (2018b). Façade design and our experience of space: the joint impact of architecture and daylight on human perception and physiological responses. In Proceedings of the Light Symposium 2018 (No. CONF).
-   Chen, Y., Cui, Z., & Hao, L. (2019). Virtual reality in lighting research: Comparing physical and virtual lighting environments. Lighting Research & Technology, 51(6), 820-837.
-   Ching, F. D. (2007). Architecture: Form, Space, & Order. John Wiley & Sons.
-   Corrodi, M., & Spechtenhauser, K. (2008). Illuminating: Natural light in residential architecture.
-   Dan-Glauser, E. S., & Scherer, K. R. (2011). The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance. Behavior research methods, 43(2), 468.
-   Ekman, P. E., & Davidson, R. J. (1994). The nature of emotion: Fundamental questions. Oxford University Press.
-   Ergan, S., Shi, Z., & Yu, X. (2018). Towards quantifying human experience in the built environment: A crowdsourcing based experiment to identify influential architectural design features. Journal of Building Engineering, 20, 51-59.
-   Erkan, İ. (2018). Examining wayfinding behaviours in architectural spaces using brain imaging with electroencephalography (EEG). Architectural Science Review, 61(6), 410-428.
-   Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Josa a, 4(12), 2379-2394.
-   Figner, B., & Murphy, R. O. (2010). Using skin conductance in judgment and decision making research. A Handbook of Process Tracing Methods for Decision Research: A Critical Review and User's Guide, 163-84
-   Friedenberg, J., & Liby, B. (2016). Perceived beauty of random texture patterns: A preference for complexity. Acta psychologica, 168, 41-49.
-   Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol., 59, 167-192.
-   Heydarian, A., Carneiro, J. P., Gerber, D., Becerik-Gerber, B., Hayes, T., & Wood, W. (2015). Immersive virtual environments versus physical built environments: A benchmarking study for building design and user-built environment explorations. Automation in Construction, 54, 116-126.
-   Heydarian, A., Pantazis, E., Wang, A., Gerber, D., & Becerik-Gerber, B. (2017). Towards user centered building design: Identifying end-user lighting preferences via immersive virtual environments. Automation in Construction, 81, 56-66.
-   Higuera-Trujillo, J. L., Maldonado, J. L. T., & Millán, C. L. (2017). Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360 Panoramas, and Virtual Reality. Applied ergonomics, 65, 398-409.
-   Holl S. (2011). Color Light Time. Zurich: Lars Muller Publishers.
-   Houser, K. W., & Tiller, D. K. (2003). Measuring the subjective response to interior lighting: paired comparisons and semantic differential scaling. Lighting Research & Technology, 35(3), 183-195.
-   Kleindienst, S., Bodart, M., & Andersen, M. (2008). Graphical representation of climate-based daylight performance to support architectural design. Leukos, 5(1), 39-61.
-   Krier, R. (1983). Elements of architecture.st. Martins Press.
-   Kuliga, S. F., Thrash, T., Dalton, R. C., & Hölscher, C. (2015). Virtual reality as an empirical research tool—Exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems, 54, 363-375.
-   Lang, P. J. (1995). The emotion probe: studies of motivation and attention. American psychologist, 50(5), 372.
-   Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology, 30(3), 261-273.
-   Le, A. T., Payne, J., Clarke, C., Kelly, M. A., Prudenziati, F., Armsby, E., ... & Wilkins, A. J. (2017). Discomfort from urban scenes: Metabolic consequences. Landscape and Urban Planning, 160, 61-68.
-   Leite, S., Dias, M. S., Eloy, S., Freitas, J., Marques, S., Pedro, T., & Ourique, L. (2019). Physiological Arousal Quantifying Perception of Safe and Unsafe Virtual Environments by Older and Younger Adults. Sensors, 19(11), 2447.
-   Mahdavi, A., & Eissa, H. (2002). Subjective evaluation of architectural lighting via computationally rendered images. Journal of the illuminating Engineering Society, 31(2), 11-20.
-   Moscoso, C., Chamilothori, K., Wienold, J., Andersen, M., & Matusiak, B. (2020). Window Size Effects on Subjective Impressions of Daylit Spaces: Indoor Studies at High Latitudes Using Virtual Reality. LEUKOS, 1-23.
-   Moscoso, C., Matusiak, B., & Svensson, U. P. (2015a). Impact of window size and room reflectance on the perceived quality of a room. Journal of Architectural and Planning Research, 294-306.
-   Moscoso, C., Matusiak, B., Svensson, U. P., & Orleanski, K. (2015b). Analysis of stereoscopic images as a new method for daylighting studies. ACM Transactions on Applied Perception (TAP), 11(4), 1-13.
-   Newsham, G. R., Cetegen, D., Veitch, J. A., & Whitehead, L. (2010). Comparing lighting quality evaluations of real scenes with those from high dynamic range and conventional images. ACM Transactions on Applied Perception (TAP), 7(2), 13.
-   Newsham, G. R., Richardson, C., Blanchet, C., & Veitch, J. A. (2005). Lighting quality research using rendered images of offices. Lighting Research & Technology, 37(2), 93-112.
-   Norwood, M. F., Lakhani, A., Maujean, A., Zeeman, H., Creux, O., & Kendall, E. (2019). Brain activity, underlying mood and the environment: A systematic review. Journal of Environmental Psychology, 101321.
-   Omidfar, a., Chamilothori, K. (2019). Influence of Subjective Impressions of a Space on Brightness Satisfaction: an Experimental Study in Virtual Reality, Proceedings of Simulation For Architecture and Urban Design (SimAUD).
-   Omidfar, A., Niermann, M., & Groat, L. N. (2015). The use of environmental aesthetics in subjective evaluation of daylight quality in office buildings. In Proceedings of IES Annual Conference.
-   Pallasmaa, J. (2012). The eyes of the skin: Architecture and the senses. John Wiley & Sons.
-   Parpairi, K., Baker, N. V., Steemers, K. A., and Compagnon, R. (2002). The Luminance Differences index: a new indicator of user preferences in daylit spaces. Lighting Research & Technology, 34(1):53–66.
-   Párraga, C. A., Brelstaff, G., Troscianko, T., & Moorehead, I. R. (1998). Color and luminance information in natural scenes. JOSA A, 15(3), 563-569.
-   Penacchio, O., & Wilkins, A. J. (2015). Visual discomfort and the spatial distribution of Fourier energy. Vision research, 108, 1-7.
-   Penacchio, O., Otazu, X., Wilkins, A. J., & Harris, J. (2015). Uncomfortable images prevent lateral interactions in the cortex from providing a sparse code. Perception, 44(S1), 67-68.
-   Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In Theories of emotion (pp. 3-33). Academic press.
-   Rizzi, A., Algeri, T., Medeghini, G., & Marini, D. (2004). A proposal for contrast measure in digital images. In Conference on colour in graphics, imaging, and vision (Vol. 2004, No. 1, pp. 187-192). Society for Imaging Science and Technology.
-   Rockcastle, S. F. (2017). Perceptual Dynamics of Daylight in Architecture (No. THESIS). EPFL.
-   Rockcastle, S. F., Chamilothori, K., & Andersen, M. (2017c). An Experiment in Virtual Reality to Measure Daylight-Driven Interest in Rendered Architectural Scenes (No. CONF).
-   Rockcastle, S., & Andersen, M. (2014). Measuring the dynamics of contrast & daylight variability in architecture: A proof-of-concept methodology. Building and Environment, 81, 320-333.
-   Rockcastle, S., Ámundadóttir, M. L., & Andersen, M. (2017a). A simulation-based workflow to assess human-centric daylight performance. In Proceedings of the Symposium on Simulation for Architecture and Urban Design (p. 3). Society for Computer Simulation International.
-   Rockcastle, S., Ámundadóttir, M. L., & Andersen, M. (2017b). Contrast measures for predicting perceptual effects of daylight in architectural renderings. Lighting Research & Technology, 49(7), 882-903.
-   Rockcastle, S., Ámundadóttir, M. L., & Andersen, M. (2018). OCUVIS: a web-based visualizer for simulated daylight performance. In Proceedings of the Symposium on Simulation for Architecture and Urban Design (p. 3). Society for Computer Simulation International.
-   Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6), 1161.
-   Russell, J. A., Ward, L. M., & Pratt, G. (1981). Affective quality attributed to environments: A factor analytic study. Environment and behavior, 13(3), 259-288.
-   Ruta, N., Mastandrea, S., Penacchio, O., Lamaddalena, S., & Bove, G. (2019). A comparison between preference judgments of curvature and. sharpness in architectural façades. Architectural Science Review, 62(2), 171-181.
-   Shin, Y. B., Woo, S. H., Kim, D. H., Kim, J., Kim, J. J., & Park, J. Y. (2015). The effect on emotions and brain activity by the direct/indirect lighting in the residential environment. Neuroscience letters, 584, 28-32.
-   Spehar, B., Wong, S., van de Klundert, S., Lui, J., Clifford, C. W. G., & Taylor, R. (2015). Beauty and the beholder: the role of visual sensitivity in visual preference. Frontiers in human neuroscience, 9, 514.
-   Steane, M. A. (2012). The Architecture of Light: Recent approaches to designing with natural light. Routledge.
-   Stokkermans, M., Vogels, I., de Kort, Y., & Heynderickx, I. (2018). A Comparison of Methodologies to Investigate the Influence of Light on the Atmosphere of a Space. Leukos, 14(3), 167-191.
-   Tiller, D. K., & Veitch, J. A. (1995). Perceived room brightness: Pilot study on the effect of luminance distribution. International Journal of Lighting Research and Technology, 27(2), 93-101
-   Van Den Wymelenberg, K. G. (2012). Evaluating human visual preference and performance in an office environment using luminance-based metrics. University of Washington.
-   Van Erp, T. (2008). The effects of lighting characteristics on atmosphere perception. Unpublished Master thesis for the Master’s degree program Human Technology Interaction, department of Eindhoven University of Technology.
-   Veitch, J. A. (2001). Psychological processes influencing lighting quality. Journal of the Illuminating Engineering Society, 30(1), 124-140.
-   Vogels, I. (2008). Atmosphere metrics. In Probing experience (pp. 25-41). Springer, Dordrecht.
-   Wang, N. and Boubekri, M. (2010a). Design recommendations based on cognitive, mood and preference assessments in a sunlit workspace. Lighting Research & Technology, 43(1):55–72.
-   Wang, N. and Boubekri, M. (2010b). Investigation of declared seating preference and measured cognitive performance in a sunlit room. Journal of Environmental Psychology, 30(2):226–238.
-   Wilkins, A., Penacchio, O., & Leonards, U. (2018). The built environment and its patterns–a view from the vision sciences. Journal of Sustainable Design and Applied Research.
-   Yin, J., Yuan, J., Arfaei, N., Catalano, P. J., Allen, J. G., & Spengler, J. D. (2020). Effects of biophilic indoor environment on stress and anxiety recovery: A between-subjects experiment in virtual reality. Environment International, 136, 105427.
-   Wymelenberg K, Inanici M. A study of luminance distribution patterns and occupant preference in daylit offices. (2009). In: PLEA2009-26th
-   Zou, Z., & Ergan, S. (2019a). A Framework towards Quantifying Human Restorativeness in Virtual Built Environments. arXiv preprint arXiv:1902.05208.
-   Zou, Z., & Ergan, S. (2019b). Where Do We Look? An Eye-Tracking Study of Architectural Features in Building Design. In Advances in Informatics and Computing in Civil and Construction Engineering (pp. 439-446). Springer, Cham.
-   Zumthor, P. (2006). Atmospheres: architectural environments, surrounding objects. Birkhauser Architecture.