ارزیابی آسایش حرارتی تطبیقی در خانه های مسکونی اقلیم گرم و خشک مطالعه موردی: استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکترای معماری، پردیس کیش دانشگاه تهران، کیش، ایران

2 استاد دانشکده معماری، پردیس هنرهای زیبا، دانشگاه تهران، تهران، ایران

چکیده

ساختمان­ها باید به گونه­ای ساخته شوند که در شرایط مختلف آب­وهوایی در عین اینکه شرایط آسایش حرارتی قابل قبول و حتی لذت­بخش را برای ساکنان به ارمغان می­آورند، سطح بالایی از کارایی انرژی را داشته­ باشند. اگرچه که امروزه نیاز به آسایش حرارتی کاربران با بهره­گیری از تجهیزات مکانیکی تامین می­گردد. اما واقعیت این است که در هر شرایط اقلیمی، با طراحی مناسب بنا می­توان تا اندازه­ای، شرایط مطلوب آسایش را فراهم کرد. و تنها زمانی که شرایط آب­وهوایی غیرقابل تحمل است از تجهیزات مکانیکی بهره گرفت. اما چگونه می­توان دانست چه شرایطی سخت و غیر قابل تحمل است؟ بی­تردید وجود معیاری مناسب کمک­ خواهد کرد. یگانه معیار قابل قبول، انسان است. از اینرو در نقاط مختلف دنیا، پژوهش­های میدانی متعددی در این زمینه انجام شده است. مقایسه­ ی بین نتایج نشان می­دهد، اولا در سراسر جهان مردم می­توانند در طیف وسیعی از محیط­های حرارتی، به آسایش دست یابند. دوم اینکه در محیط­های مورد بررسی، بین پیش­بینی­های جدیدترین و بهترین شاخص­های حرارتی و چگونگی احساس گرمایی افراد، اختلاف واضحی وجود دارد. پژوهش حاضر در پی پاسخ به این مسئله، به کمک انجام مطالعات میدانی در اقلیم گرم و خشک ایران است و اهداف آن، ارائه‌ی دمای خنثی و دامنه‌ی شرایط محیطی قابل قبول برای ساکنان خانه‌های مسکونی در کرمان و اقلیم‌های مشابه، مقایسه‌ی دمای خنثی در خانه‌های فاقد و دارای سیستم سرمایش مکانیکی و کشف رابطه‌ی بین دمای خنثی و دمای داخلی، و مهم‌تر از آن رابطه‌ی دمای خنثی و دمای بیرون از ساختمان، خواهد بود. نتایج نشان می‌دهد که همبستگی قابل قبولی بین دمای خنثی و میانگین دمای داخلی ساختمان و از آن مهم‌تر بین دمای خنثی و دمای خارجی ساختمان برقرار است. همچنین با توجه به نتایج ارائه شده مشاهده می‌شود که ساکنان خانه‌های مورد بررسی، در دمای بالاتری نسبت به آنچه در استانداردهای بین‌المللی مثل ایزو ۷۷۳۰ منتج شده از نظریه متوسط آرای پیش بینی شده (PMV) فانگر، بیان شده است، احساس راحتی می­ کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating adaptive thermal comfort in residential buildings in hot-arid climates Case study: Kerman province

نویسندگان [English]

  • Leyli Hashemi Rafsanjani 1
  • Shahin Heidari 2
1 Ph.D. candidate of Architecture, International Campus-Kish Island, University of Tehran, Tehran, Iran
2 Faculty member, Faculty of Architecture, University of Tehran, Tehran, Iran
چکیده [English]

Buildings should be built in such a way that provide acceptable and even pleasant thermal comfort for the users, while having high energy performance at the same time. Although today thermal comfort can be provided using mechanical equipment, but proper design can also provide comfort to some extent in any climate, so that mechanical equipment are only used when climate is unbearable. But how do we identify unbearable climatic conditions? We need a suitable criteria and the only acceptable one is the human being. numerous field studies have been conducted around the world on this subject. Comparison of results shows that, firstly, people around the world can reach comfort in a wide range of thermal environments. Secondly, there is a substantial difference between the predicted values of best thermal criteria and the actual feelings of people about thermal comfort. The present study aim to address this issue using field studies in hot-arid climates of Iran, and includes suggestions for neutral temperature and an acceptable range of environmental conditions for residents in Kerman city and similar climates.
It also includes comparisons between houses with and without mechanical cooling in terms of neutral temperature, and the relationship between neutral and indoor temperatures, and more importantly, between neutral and outdoor temperatures.
The results show that there is an acceptable correlation between the neutral temperature and the average indoor temperature, and more importantly, the outdoor temperature. Based on the results, it can be seen that the inhabitants under study, feel comfortable in higher temperatures than what is stated in international standards such as ISO7730 derived from Fanger᾽s predicted mean votes (PMV) theory. 

کلیدواژه‌ها [English]

  • Residential building
  • Adaptive thermal comfort
  • Comfort temperature
  • Free running mode
  • Cooling mode
-   برزگر، زهرا و شاهین حیدری. (1392).بررسی تاثیر تابش دریافتی خورشید در بدنه های ساختمان بر مصرف انرژی بخش خانگی. هنرهای زیبا-معماری و شهرسازی 18، 1-45.
-   حیدری، شاهین، غفاری جباری، شهلا. (۱۳۸۹). منطقه راحتی حرارتی در اقلیم سرد و خشک ایران، هنرهای زیبا-معماری و شهرسازی. ۴۴.
-   حیدری، شاهین. (1392).تعیین الگوی بهینه حیاط مرکزی در مسکن سنتی دزفول. باغ نظر 5، 27-39.
-   حیدری، شاهین. (1393). سازگاری حرارتی در معماری. تهران: انتشارات دانشگاه تهران.
-   گزارشات سازمان هواشناسی کرمان(1396)
-  Aljawabra, F. (2014). Thermal comfort in outdoor urban spaces: The hot arid climate ', Ph.D., University of Bath.
-  ASHRAE Handbook. )2017(. Fundamentals, American Society of Heating, Refrigerating and AirConditioning Engineers, Atlanta
-  Auliciems, R. de Dear. (1986)،  Air-conditioning in Australia I—human thermal factors, Architectural Science Review 29 (3), 67-75.
-  CENA, K. and DE DEAR, R. (2001), Thermal comfort and behavioural strategies in office buildings located in a hot-arid climate, Journal of Thermal Biology, 26, 409-414.
-  Deuble, M.P. de Dear, R.J. (2012), Mixed-mode buildings: a double standard in occupants’ comfort expectations, Build. Environ. 54, 53-60.
-  de Dear, R. & Schiller Brager, G. (2001), The adaptive model of thermal comfort and energy conservation in the built environment, Int J Biometeorol,  Volume 45, Issue 2, pp 100–108
-  De Dear, R.J.; Leow, K.G.; Foo, S.C. (1991), Thermal comfort in the humid tropics: Field experiments in air-conditioned and naturally ventilated buildings in Singapore. Int. J. Biometeorol. 34, 259–265.
-  Djamila, H.; Chu, C.M.; Kumaresan, S. 2013, Field study of thermal comfort in residential buildings in the equatorial hot-humid climate of Malaysia. Build. Environ. 62, 133–142.
-  Ealiwa, M.; Taki, A.; Howarth, A.; Seden, M. (2001), An investigation into thermal comfort in the summer season of Ghadames, Libya. Build. Environ. 36, 231–237.
-  Feriadi, H.; Wong, N.H. (2004), Thermal comfort for naturally ventilated houses in Indonesia. Energy Build. 36, 614–626.
-  Heidari, S.; Sharples, S.( 2002), A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy and Buildings, 34, 607–614.
-  Humphreys, M. A. (1976) Field studies of thermal comfort: compared and applied, Building Services Engineer, 44, 5-22.
-  Humphreys, M. A. (1978), Outdoor temperatures and comfort indoors" Building Research and Practice. 6 no. 2, 92-107.
-  Humphreys, M. A. and Nicol, J. F., (1995), Adaptive thermal comfort and sustainable thermal standards for buildings, Oxford Centre for Sustainable Development, School of Architecture, Oxford Brookes University
-  Humphreys, M.A. and Nicol, J.F. (2000) Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies ASHRAE Transactions 206(2) pp 485-492
-  .Han, J.; Zhang, G.; Zhang, Q.; Zhang, J.; Liu, J.; Tian, L.; Zheng, C.; Hao, J.; Lin, J.; Liu, Y.; et al. (2007), Field study on occupants’ thermal comfort and residential thermal environment in a hot-humid climate of China. Build. Environ. 42, 4043–4050.
-  Hensen, J. L. M. (1990) Literature review on thermal comfort in transient conditions, Building and Environment. 25 no. 4, pp, 309 - 316.
-  Indraganti, M.( 2010). Using the adaptive model of thermal comfort for obtaining the indoor neutral temperature: Findings form a field study in Hyderabad. Build. Environ. 45, 519–536.
-  J. van Hoof, M. Mazej, J.L.M. Hensen, (2010)Thermal comfort: research and practice, Front. Biosci. 15 (2), 765-788.
-  Kwok, A. Rajkovich, N. B. (2010). Adressing climate change in comfort standards. Building and Environment V.45, pp. 18-22
-  Mustapa, M. S., Zaki, S. A., Rijal, H. B., Hagishima, A., & Ali, M. S. M. (2016). Thermal comfort and occupant adaptive behaviour in Japanese university buildings with free running and cooling mode offices during summer. Building and Environment105, 332-342.
-  McIntyre, D. A. and R. R. Gonzalez,(1976), Man's thermal senSItivity during temperature changes at two levels of clothing insulation and activity, ASHRAE Transactions. 82 pt. 2, pp. 219-233.
-  Mui KWH and Chan WTD. (2003), Adaptive comfort temperature model of air-conditioned building in Hong Kong. Build Enviroment; 38(6): 837–852.
-  Nakaya, T.; Matsubara, N.; Kurazumi, Y. (2005), A field study of thermal environment and thermal comfort in Kansai region, Japan: Neutral temperature and acceptable range in summer. J. Environ. Eng. AIJ, 597, 51-56.
-  Nicol, J. F. (2003), Thermal comfort state of the art and future directions. In: Santamouris, M., (Ed.) Solar Thermal Technologies, Jemes and James Sicence Publisher, London, UK.
-  Nicol, F.; Roaf, S. (1996). Pioneering new indoor temperature standards: The Pakistan project. Energy Build., 23, 169–174.
-  Nicol, F.; Jamy, G.N.; Sykes, O.; Humphreys, M.; Roaf, S.; (1994), Hancock, M. A Survey of Thermal Comfort in Pakistan toward New Indoor Temperature Standards; Oxford Brookes University: Oxford, UK,.
-  Nicol, J. F. (1993) Thermal Comfort- A Handbookfor Field Studies toward An Adaptive Model. School of Architecture, University of East London. London.
-  Nicol, F.; Humphreys, M.; Roaf, S.; (2012), Hancock, M. Adaptive Thermal Comfort (Principle and Practice); Routledge: New York, USA.
-  Ogbonna, A. C., & Harris, D. J. (2008). Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria. Applied Energy85(1), 1-11. 
-  Rijal, H.B.; Honjo, M.; Kobayashi, R.; Nakaya, T. (2013), Investigation of comfort temperature, adaptive model and the window opening behaviour in Japanese houses. Archit. Sci. Rev. 56, 54–69. 

-  Rijal, H.B.; Yoshida, H.; Umemiya, N. (2010). Seasonal and regional differences in neutral temperatures in Nepalese traditional vernacular houses. Build. Environ., 45, 2743–2753. 

-  Rijal, H.B.; Stevenson, F.( 2010). Thermal Comfort in UK Housing to Avoid Overheating: Lessons from a “Zero Carbon” Case Study. In Proceedings of the Conference Adapting to Change: New Thinking on Comfort, Windsor, UK, 9–11 .
-  van Hoof J and Hensen JLM. (2007), Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones. Build Environ; 42(1): 156–170.
-  Yang, L. Yan, H. Lam, J.C. (2014).Thermal comfort and building energy consumption implications—a review, Appl. Energy 115, 164-173 .
-  Zhao, R. Sun, S. Ding, R. (2004), Conditioning strategies of indoor thermal environment in warm climates, Energy and Building. 36 (12), 1282-128