ارزیابی عملکرد سیستم سرمایش تبخیری هیبرید در ساختمان های مسکونی اقلیم گرم و خشک، با رویکرد کاهش مصرف آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی معماری و انرژی، دانشکده هنر و معماری، دانشگاه یزد، یزد، ایران

2 استادیار و عضو هیئت علمی گروه معماری، دانشکده هنر و معماری، دانشگاه یزد، یزد، ایران

چکیده

"تامین آسایش حرارتی ساختمان‌های مسکونی در فصل گرما"،سبب مصرف بالای برق و متعاقبا ایجاد آلودگی، تغییرات آب و هوایی و کاهش منابع می‌گردد.این مسئله در اقلیم گرم و خشک، به ‌واسطه مصرف بالای آب برای سرمایش تبخیری با سیستم‌های متداول(کولر آبی)چالش بیشتری دارد. با هدف کاهش مصرف آب و تامین آسایش حرارتی و ایجاد سرمایش نسبی، می‌بایست سیستمی در نظر گرفته شود که با هزینه کم، اقداماتی ساده و کمترین تجهیزات،بر روی ساختمان اعمال گردد.به همین سبب، سیستم هیبریدی متناسب با این اقلیم پیشنهاد می‌شود که بتواند اهداف پژوهش را تحقق بخشد. در این پژوهش،به منظور بررسی کارکرد سیستم پیشنهادی،دو اتاق مشابه،به صورت تجربی،مورد بررسی قرار گرفتند.در این زمینه،شاخص های محیطی،نظیر دما،رطوبت‌نسبی و جریان هوا توسط سنسور های مربوط به مدت 5 روز(شبانه روزی)در اتاق های مذکور، پایش گردید. در بخش اول،ابتدا وضعیت دو اتاق مشابه نسبت به یکدیگر بررسی شد.در بخش دوم، سیستم هیبریدی پیشنهادی در یکی از اتاق‌ها تعبیه و عملکرد آن نسبت به تهویه طبیعی یک طرفه وکولر آبی مقایسه شد. در بخش اول، مشخص شد، اتاق‌ها از نظر وضعیت محیطی، یکسان هستند و راهکارهای تهویه طبیعی یک طرفه و سرمایش تبخیری متکی به تهویه طبیعی بر شرایط اتاق‌ها کمترین تاثیر را داشته اند. در بخش دوم، سیستم هیبریدی کارایی خود را به اثبات رساند. زمانی که میانگین دمای محیط بیرون°C30- 32باشد، سیستم هیبریدی پیشنهادی به کاهش دمای محیط داخلی قادر است. این سیستم نسبت به شرایط تهویه طبیعی یک طرفه در محیط داخل، به طور میانگین،°C5/5کاهش دما و%16-%18افزایش رطوبت نسبی ایجاد کرده است. اگرچه در ساعات محدودی شرایط آسایش حرارتی تامین نشده است؛ این سیستم در مقایسه با کولر آبی مورد مطالعه، کاهش%96مصرف آب و%74مصرف برق را به همراه داشته است. به عبارتی، مصرف آب را از290liters/dayتوسط کولر آبی موجود، به حداکثر10liters/day،رسانده است. همچنین،سیستم مذکور مصرف برق را از 10kWh به2.6kWh کاهش داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance evaluation of the hybrid evaporative cooling system in residential buildings in hot and arid climates, with a water conservation approach

نویسندگان [English]

  • Sara Alidoost 1
  • Leila Moosavi 2
1 Master Student of Energy & Architecture, Department of Architecture, Faculty of Art & Architecture, Yazd University, Yazd, Iran
2 Assistant Professor, Faculty Member of Architectural Department, Department of Architecture, Faculty of Art & Architecture, Yazd University, Yazd, Iran
چکیده [English]

Extended Abstract



1. Introduction

Cooling systems in hot and arid climate buildings play a significant role in climate change due to their high water and energy consumption. Although evaporative coolers are effective at cooling the space, they are often uncontrollable and ineffective during periods of low cooling demand, which can result in overcooling of the indoor space. Previous studies have paid less attention to reducing water consumption in evaporative cooling systems. Therefore, a study has been conducted to propose a hybrid cooling system for reducing water consumption in evaporative cooling of buildings in hot and arid climates. This study aims to add new features to the existing cooling system in hot and arid climates, transforming it into a more suitable cooling system that can significantly reduce water and energy consumption while improving indoor thermal conditions.





2. Research Methodology

This study was conducted on a sample residential building in the hot and arid climate of Yazd City for five days (24 hours per day in August and September). The building had a 3D panel structure, which acted as an insulator. A field study was conducted during the summer season in two similar rooms. Environmental indicators, such as temperature, relative humidity, air velocity, and water consumption by the evaporative cooler, were measured using relevant devices. The experiment consisted of two stages: evaluating the initial state of the rooms and assessing the performance of the evaporative cooler and hybrid system compared to one-sided natural ventilation.



3. Results and discussion

When the rooms were examined for uniformity, among the three tested states, one-sided natural ventilation and evaporative cooling based on natural ventilation had little effect on reducing the space temperature, and only the evaporative cooler had an effective role in reducing the room's temperature. By using the evaporative cooler for 24 hours, on average, the temperature reduction was 8°C compared to the one-sided natural ventilation, and the relative humidity increased by 23%. The measurements indicated that during a 24-hour period, the evaporative cooler consumed 290 liters of water and 10kWh of electricity.



4. Conclusion

The performance of evaporative cooling systems was compared to one-sided natural ventilation as the base case. The proposed hybrid system achieved an average temperature reduction of 5.5 °C and an increase in relative humidity of 16-18 % compared to the one-sided natural ventilation. While the hybrid system had lower temperature fluctuations compared to the evaporative cooler, on average, the temperature decreased more and the relative humidity increased more with the use of the evaporative cooler. By examining the effect of this issue on the room, the evaporative cooler's performance was excessive most of the time, making it unsuitable for providing thermal comfort. In contrast, the hybrid system provided better thermal comfort than the evaporative cooler in most hours, even with an outdoor environment temperature ranging from 32°C to 30°C. Using the hybrid system instead of the evaporative cooler can reduce electricity consumption by 74% and water consumption by 96%. In other words, it reduced water consumption to 10 liters/day and electricity consumption to 2.6 kWh. Importantly, this system is designed with auxiliary fans and components related to the evaporative cooler, and it can be easily implemented as a simple and low-cost solution with high performance and a low payback period without creating limitations in the design. Therefore, it will be a suitable replacement for current mechanical evaporative cooling systems for the afternoon, evening, and early morning hours (between 18:00 to 08:00) in warm summer and spring months.

کلیدواژه‌ها [English]

  • Hybrid Systems
  • Thermal Comfort
  • Water Conservation
  • Energy Efficient
  • Evaporative Cooling
Abdallah, A. S. H., Yoshino, H., Goto, T., Enteria, N., Radwan, M. M., & Eid, M. A. (2013). Integration of evaporative cooling technique with solar chimney to improve indoor thermal environment in the New Assiut City, Egypt. International Journal of Energy and Environmental Engineering, 4(1), 1-15. doi:https://doi.org/10.1186/2251-6832-4-45
(2023). Swamp Cooler Specification. Retrieved from https://www.aabsalco.com/upload/catalog/1611564166-AC70.pdf (In Persian)
Ahmed, T., Kumar, P., & Mottet, L. (2021). Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality. Renewable and Sustainable Energy Reviews, 138, 110669. doi:https://doi.org/10.1016/j.rser.2020.110669
Al-Hassawi, O. D. S. (2021). Advancing performance of passive downdraft cooling: results from built prototypes of single stage and hybrid downdraft cooling towers. ARCHITECTURAL SCIENCE REVIEW, 64(1-2), 17-27. doi:https://doi.org/10.1080/00038628.2020.1731677
Alaidroos, A., & Krarti, M. (2016). Experimental validation of a numerical model for ventilated wall cavity with spray evaporative cooling systems for hot and dry climates. Energy and Buildings, 131, 207-222. doi:https://doi.org/10.1016/j.enbuild.2016.09.035
American Society of Heating, R., & Engineers, A.-C. (2017). Thermal Environmental Conditions for Human Occupancy: ANSI/ASHRAE Standard 55-2017 (Supersedes ANSI/ASHRAE Standard 55-2013) Includes ANSI/ASHRAE Addenda Listed in Appendix N: Ashrae.
Bagasi, A. A., & Calautit, J. K. (2020). Experimental field study of the integration of passive and evaporative cooling techniques with Mashrabiya in hot climates. Energy and Buildings, 225, 110325. doi:https://doi.org/10.1016/j.enbuild.2020.110325
Bagasi, A. A., Calautit, J. K., & Karban, A. S. (2021). Evaluation of the Integration of the traditional architectural element Mashrabiya into the ventilation strategy for buildings in hot climates. Energies, 14(3), 530. doi:https://doi.org/10.3390/en14030530
Bishoyi, D., & Sudhakar, K. (2017). Experimental performance of a direct evaporative cooler in composite climate of India. Energy and Buildings, 153, 190-200. doi:https://doi.org/10.1016/j.enbuild.2017.08.014
Boretti, A., & Rosa, L. (2019). Reassessing the projections of the World Water Development Report. npj Clean Water, 2(1), 15. doi:https://doi.org/10.1038/s41545-019-0039-9
Chiesa, G., Grosso, M., Bogni, A., & Garavaglia, G. (2017). Passive Downdraught Evaporative Cooling System Integration in Existing Residential Building Typologies: A Case Study. Energy Procedia, 111, 599-608. doi:https://doi.org/10.1016/j.egypro.2017.03.222
0. (2021). Climate Consultant (Version 6.0): UCLA Retrieved from https://energy-design-tools.sbse.org/
Cuce, P. M., & Riffat, S. (2016). A state of the art review of evaporative cooling systems for building applications. Renewable and Sustainable Energy Reviews, 54, 1240-1249. doi:https://doi.org/10.1016/j.rser.2015.10.066
(2023). Axial Fan Specifications. Retrieved from https://www.damandeh.com/module/DamandeFanProduct/View/ProductDetail/page-2596/index.aspx?ProductId=1504&SeriId=1070
Duan, Z., Zhan, C., Zhang, X., Mustafa, M., Zhao, X., Alimohammadisagvand, B., & Hasan, A. (2012). Indirect evaporative cooling: Past, present and future potentials. Renewable and Sustainable Energy Reviews, 16(9), 6823-6850. doi:https://doi.org/10.1016/j.rser.2012.07.007
Elaouzy, Y., & El Fadar, A. (2022). Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review. Renewable and Sustainable Energy Reviews, 167, 112828. doi:https://doi.org/10.1016/j.rser.2022.112828
fallah, e., Heidari, S., & Fazeli, M. (2017). Efficiency Evaluation of the Passive Cooling Systems in the Hot and Dry Climate of Iran (Study on the City of Yazd and Isfahan). Iranian Journal of Energy, 19(4), 0-0. Retrieved from http://necjournals.ir/article-1-979-en.html (In Persian)
Ghoulem, M., El Moueddeb, K., Nehdi, E., Zhong, F., & Calautit, J. (2020). Analysis of passive downdraught evaporative cooling windcatcher for greenhouses in hot climatic conditions: Parametric study and impact of neighbouring structures. Biosystems Engineering, 197, 105-121. doi:https://doi.org/10.1016/j.biosystemseng.2020.06.016
Gol Shiri Isfahani, O., & Shahdipour, A. (2018). Investigating the saving of water consumption due to the replacement of air conditioners with evaporative coolers: A case study in Yazd city. Paper presented at the Second Congress of Iranian Water and Wastewater Science and Engineering. https://civilica.com/doc/856098 (In Persian)
Harrouz, J. P., Ghali, K., & Ghaddar, N. (2021). Integrated solar – Windcatcher with dew-point indirect evaporative cooler for classrooms. Applied Thermal Engineering, 188, 116654. doi:https://doi.org/10.1016/j.applthermaleng.2021.116654
Hatamipour, M. S., Mahiyar, H., & Taheri, M. (2007). Evaluation of existing cooling systems for reducing cooling power consumption. Energy and Buildings, 39(1), 105-112. doi:https://doi.org/10.1016/j.enbuild.2006.05.007
Heidari, A., Roshandel, R., & Vakiloroaya, V. (2019). An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates. Energy Conversion and Management, 185, 396-409. doi:https://doi.org/10.1016/j.enconman.2019.02.015
Heidarinejad, G., Bozorgmehr, M., Delfani, S., & Esmaeelian, J. (2009). Experimental investigation of two-stage indirect/direct evaporative cooling system in various climatic conditions. Building and Environment, 44(10), 2073-2079. doi:https://doi.org/10.1016/j.buildenv.2009.02.017
Heidarinejad, G., Heidarinejad, M., Delfani, S., & Esmaeelian, J. (2008). Feasibility of using various kinds of cooling systems in a multi-climates country. Energy and Buildings, 40(10), 1946-1953. doi:https://doi.org/10.1016/j.enbuild.2008.04.016
Hughes, B. R., Calautit, J. K., & Ghani, S. A. (2012). The development of commercial wind towers for natural ventilation: A review. Applied Energy, 92, 606-627. doi:https://doi.org/10.1016/j.apenergy.2011.11.066
Jafari, S., & Kalantar, V. (2022). Numerical simulation of natural ventilation with passive cooling by diagonal solar chimneys and windcatcher and water spray system in a hot and dry climate. Energy and Buildings, 256, 111714. doi:https://doi.org/10.1016/j.enbuild.2021.111714
Jomehzadeh, F., Nejat, P., Calautit, J. K., Yusof, M. B. M., Zaki, S. A., Hughes, B. R., & Yazid, M. N. A. W. M. (2017). A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment. Renewable and Sustainable Energy Reviews, 70, 736-756. doi:https://doi.org/10.1016/j.rser.2016.11.254
Kabeel, A., & Bassuoni, M. (2017). A simplified experimentally tested theoretical model to reduce water consumption of a direct evaporative cooler for dry climates. International Journal of Refrigeration, 82, 487-494. doi:https://doi.org/10.1016/j.ijrefrig.2017.06.010
Kang, D., & Strand, R. K. (2016). Significance of parameters affecting the performance of a passive down-draft evaporative cooling (PDEC) tower with a spray system. Applied Energy, 178, 269-280. doi:10.1016/j.apenergy.2016.06.055
Kang, D., & Strand, R. K. (2018). Performance control of a spray passive down-draft evaporative cooling system. Applied Energy, 222, 915-931. doi:https://doi.org/10.1016/j.apenergy.2018.03.039
Kang, D., & Strand, R. K. (2019). Analysis of the system response of a spray passive downdraft evaporative cooling system. Building and Environment, 157, 101-111. doi:https://doi.org/10.1016/j.buildenv.2019.04.037
Khourchid, A. M., Al-Ansari, T. A., & Al-Ghamdi, S. G. (2023). Cooling Energy and Climate Change Nexus in Arid Climate and the Role of Energy Transition. Buildings, 13(4), 836. Retrieved from https://www.mdpi.com/2075-5309/13/4/836
Maerefat, M., & Haghighi, A. (2010). Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity. Renewable Energy, 35(9), 2040-2052. doi:https://doi.org/10.1016/j.renene.2010.02.005
Murshed, S. S. (2019). Advanced Cooling Technologies and Applications: BoD–Books on Demand.
Nejat, P., Jomehzadeh, F., Hussen, H. M., Calautit, J. K., & Abd Majid, M. Z. (2018). Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls. Energies, 11(10), 2536. doi:https://doi.org/10.3390/en11102536
Nemati, N., Omidvar, A., & Rosti, B. (2021). Performance evaluation of a novel hybrid cooling system combining indirect evaporative cooler and earth-air heat exchanger. Energy, 215, 119216. doi:https://doi.org/10.1016/j.energy.2020.119216
Nesary Moghadam, M., & yaghoubian, m. (2013). Investigating water and electricity consumption in evaporative coolers and Air conditioners and providing new solutions for building cooling. Paper presented at the The Second National Conference on Climate, Building and Energy Efficiency, Iran Energy Efficiency Organization (IEEO-SABA), Isfahan. https://civilica.com/doc/215848 (In Persian)
Omara, A. A. M., Mohammed, H. A., Al Rikabi, I. J., Abuelnour, M. A., & Abuelnuor, A. A. A. (2021). Performance improvement of solar chimneys using phase change materials: A review. Solar Energy, 228, 68-88. doi:https://doi.org/10.1016/j.solener.2021.09.037
pourahmadi, M., & Ayatollahi, S. M. H. (2012). Refunctioning Solutions For Different Wind Catchers Of Yazd Based On Their Related Summer Side Spaces. Journal of Architecture in Hot and Dry Climate, 1(1), 7-18. Retrieved from https://smb.yazd.ac.ir/article_38_ce048c29380b977c7ded2258a75118c8.pdf (In Persian)
Rabbani, D., Mousavi, S. G. A., & Qara Guzlu, M. (2008). Modeling the water consumption of an evaporative cooler in the hot and arid region of Qom. Paper presented at the 11th National Congress On Environmental Health. https://civilica.com/doc/144564
Reza-zadeh Pileh-Dar-Boni, N., Heidari, S., & Soltan-zadeh, H. (2022). Behavioral Adaptation in Villas and Apartments of Rasht during Summer. Journal of Iranian Architecture Studies, 11(21), 131-157. doi:10.22052/JIAS.2022.246485.1059 (In Persian)
Serageldin, A. A., Abdeen, A., Ahmed, M. M., Radwan, A., Shmroukh, A. N., & Ookawara, S. (2020). Solar chimney combined with earth to-air heat exchanger for passive cooling of residential buildings in hot areas. Solar Energy, 206, 145-162. doi:https://doi.org/10.1016/j.solener.2020.05.102
Sohani, A., & Sayyaadi, H. (2018). Thermal comfort based resources consumption and economic analysis of a two-stage direct-indirect evaporative cooler with diverse water to electricity tariff conditions. Energy Conversion and Management, 172, 248-264. doi:https://doi.org/10.1016/j.enconman.2018.07.008
Sohani, A., Sayyaadi, H., & Mohammadhosseini, N. (2018). Comparative study of the conventional types of heat and mass exchangers to achieve the best design of dew point evaporative coolers at diverse climatic conditions. Energy Conversion and Management, 158, 327-345. doi:https://doi.org/10.1016/j.enconman.2017.12.042
Sohani, A., Sayyaadi, H., & Zeraatpisheh, M. (2019). Optimization strategy by a general approach to enhance improving potential of dew-point evaporative coolers. Energy Conversion and Management, 188, 177-213. doi:https://doi.org/10.1016/j.enconman.2019.02.079
Song, Y.-l., Darani, K. S., Khdair, A. I., Abu-Rumman, G., & Kalbasi, R. (2021). A review on conventional passive cooling methods applicable to arid and warm climates considering economic cost and efficiency analysis in resource-based cities. Energy Reports, 7, 2784-2820. doi:https://doi.org/10.1016/j.egyr.2021.04.056
Soumia, O., AbdElKader, H., & Djaffar, S. (2022). Evaluation of old building processes in the housing of Algeria’s arid regions and its improvement by integration of passive downdraught evaporative cooling. Energy and Buildings, 273, 112395. doi:https://doi.org/10.1016/j.enbuild.2022.112395
Taleb, H. M. (2014). Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in UAE buildings. Frontiers of Architectural Research, 3(2), 154-165. doi:https://doi.org/10.1016/j.foar.2014.01.002
Tartarini, F., Schiavon, S., Cheung, T., & Hoyt, T. (2020). CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 100563. doi:https://doi.org/10.1016/j.softx.2020.100563
Zare Mohazabie, A., Shahcheraghi, A., & Shahin, H. (2022). Indoor Environmental Quality with an Emphasis on Thermal Comfort in Traditional Houses, Case studies: Two Qajar Houses in Shiraz. Journal of Iranian Architecture Studies, 5(9), 85-100. Retrieved from https://jias.kashanu.ac.ir/article_111760_281047e8c5d1103a0d15430eafd39380.pdf (In Persian)