مقایسه تاثیر مصالح جداره های خارجی بر آسایش حرارتی ساکنین و انتخاب مصالح بهینه در اقلیم گرم و نیمه خشک (نمونه موردی: شهر دزفول)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه معماری دانشکده معماری و شهرسازی دانشگاه صنعتی جندی‌شاپور دزفول

2 مدرس گروه معماری، دانشکده معماری و شهرسازی، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران

چکیده

ارزیابی دیوار خارجی ساختمان به‌ جهت دستیابی به ساخت ‌و سازی پایدار در صنعت ساختمان‌سازی مسکونی ودر راستای کاهش مصرف ‌انرژی وایجاد شرایط آسایش‌ ساکنین دراقلیم‌های مختلف همواره دارای اهمیت است. پژوهش حاضر تلاش داردتا رفتار‌ حرارتی مصالح به کاررفته دردیوارهای‌ خارجی ساختمان‌های مسکونی واقع درشهر دزفول رامورد بررسی قراردهد. مدل‌های آزمایشی مورد بررسی جمعا شامل دوازده نوع دیوار با مصالح: آجر ‌سوراخدار، بلوک‌ سفالی، بلوک ‌هبلکس‌ و بلوک ‌لیکا به همراه عایق‌های حرارتی ETICS و XPS‌ هستند. در ‌انتها به منظور شناسایی شرایط‌ آسایش در درون فضاهای مسکونی با در‌نظر گرفتن مقیاس هفت‌گانه اشری بهینه‌ترین دیوار معرفی می‌گردد.

پژوهش فوق دارای روش شناسی کمی ‌و ‌مقایسه‌ای است که ‌بر ‌‌‌پایه مطالعات کتابخانه‌ای و‌ میدانی با شبیه‌سازی 12 نوع دیوار در اقلیم‌ گرم‌‌‌ و نیمه‌‌ خشک دزفول توسط نرم‌افزار دیزاین‌‌ بیلدر به تجزیه ‌‌و‌‌ تحلیل پرداخته‌ است.

نتایج شبیه‌سازی در حالت ناپایدار مغایر با شرایط‌ پایدار در اقلیم گرم‌‌‌ و نیمه‌‌ خشک است. براساس روش محاسباتی شرایط‌پایدار، دیوار با ضریب ‌هدایت حرارتی کمتر دارای رفتار حرارتی بهینه‌تری است. در ‌حالی ‌که‌ در شرایط‌ ناپایدار، دیوار ‌با جرم ‌حرارتی بالاتر نقش موثرتری را‌ به جهت ‌دستیابی به ‌شرایط آسایش‌ حرارتی ساکنین ایفا می‌کند.

از‌ میان 12‌دیوار بررسی ‌‌شده، با‌ توجه به ‌شرایط‌ آسایش نشان داده ‌شده در شاخص PMV و‌ نظر‌ به‌ نیاز‌ غالب سرمایش اقلیم گرم‌‌‌ و نیمه‌‌ خشک دزفول می‌توان نتیجه گرفت که دیوارهای دارای عایق‌حرارتی ETICS و XPS دارای عملکرد مناسبی نیستند. در حالی که دیوارها با آجر ‌سوراخدار، بلوک‌ سفالی، بلوک ‌هبلکس و بلوک ‌لیکا بدون ‌عایق ‌حرارتی عملکرد بهتری را ‌دارا هستند؛ ‌از ‌میان این‌ دیوارها، دیوار با بلوک‌‌ لیکا بدون ‌عایق ‌حرارتی مناسب‌ترین رفتار‌حرارتی و دیوارها با بلوک هبلکس و آجر سوراخدار هر دو بدون عایق حرارتی به ترتیب در رتبه دوم و سوم در ‌جهت‌ دستیابی به آسایش‌حرارتی و کاهش‌ مصرف انرژی قرار می‌گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of the influence of exterior walls on the thermal comfort of dwellers and selection of optimal materials in hot and semi- arid climates (case study: Dezful)

نویسندگان [English]

  • Kourosh Momeni 1
  • Mahsa Tanoorsaz 2
1 Associate Professor of Architecture, Faculty of Architecture and Urban Planning, Jundi-Shapur University of Technology, Dezful, Iran
2 Lecturer, Department of Architecture, Faculty of Architecture and Urban Planning, Jundi-shapur University of Technology, Dezful, Iran
چکیده [English]

To achieve sustainable construction in residential building industry and to reduce energy consumption and create comfort conditions for residents under various climates, it is required to examine the exterior shell of buildings serving as the main interface between the interior and exterior or spaces. This research thus aims to examine the thermal behavior of bearing or non-bearing walls used in the city of Dezful, which are made of perforated brick, clay block, Hebelex block (AAC) and Lica block, and to study the thermal insulations of ETICS and XPS in order to identify comfort conditions inside the space using the ASHRAE 7-point scale. The present research seeks to explore how the thermal behavior of materials incorporated into exterior walls influences heat transfer to interior spaces and the thermal confrontation of residential building dwellers in Dezful.

The present research adopts a quantitative comparative approach and bases its analysis on secondary and field research, simulating 12 types of walls in the hot and semi- arid climate of Dexful using Design Builder software.

Results suggested that simulation outputs in the dynamic mode did not resonate with sustainable conditions in the studied climate. The method adopted to calculate stable conditions indicated that the wall with the lowest thermal conductivity coefficient would behave the most optimal behavior. Contrastingly, the wall with the highest thermal capacity would be the most effective in achieving thermal comfort for dwellers under unstable conditions.

Results of evaluations and analyses revealed that data on the thermal transfer of exterior walls varied under stable and unstable conditions, and calculations made under stable condition assumptions needed to be replaced by unstable conditions. The following results were obtained based on the comfort conditions of the 12 studied walls demonstrated in the PMV diagram and considering the dominant need for cooling in the studied climate: 1. XPS and ETICS heat-insulated walls did not perform well. 2. Walls made with clay blocks, perforated bricks, and Hebelex and Leca blocks without heat insulation performed better, among which Leca blocks with no heat insulation indicated the best thermal behavior in terms of energy consumption and thermal comfort.

کلیدواژه‌ها [English]

  • Thermal comfort
  • Exterior wall
  • Thermal insulation
  • energy consumption reduction
  • Dezful
Abba, Habu Yusuf, Majid, Roshida Abdul, Ahmed, Muhammad Hamdan, & Gbenga, Olutobi. (2022). Validation of Design builder Simulation Accuracy Using Field Measured Data of Indoor Air Temperature in A Classroom Building. Management, 7(27), 171-178. DOI: 10.35631/JTHEM.727014
Amerine, M, Berg, H, & Cruess, William V. (2021). American Society of Refrigerating and Air Conditioning Engineers. ASHRAE handbook. Guide to Sources for Agricultural and Biological Research, 462.
Bryan, Edvard. (2014). Rough Guide to Sustainability.
Byrne, Aimee, Byrne, Gerard, Davies, Anna, & Robinson, Anthony James. (2013). Transient and quasi-steady thermal behaviour of a building envelope due to retrofitted cavity wall and ceiling insulation. Energy and Buildings, 61, 356-365. DOI: 10.1016/j.enbuild.2013.02.044
Danovska, Maja, Pernigotto, Giovanni, Baggio, Paolo, & Gasparella, Andrea. (2022). Simulation uncertainty in heat transfer across timber building components in the Italian climates: The role of thermal conductivity. Energy and Buildings, 268, 112190. DOI: 10.1016/j.enbuild.2022.112190
Hashmi Rafsanjani, Lilisadat, Heydari, Shahin. (2017). Evaluation Of Comparative Thermal Comfort In Residential Houses Of Hot And Dry Climate, Case Study: Kerman Province. Hot And Dry Climate Architecture, 7, 43-65. DOI: 10.29252/AHDC.2018.1422
Heydari, Shahin. (2014). Thermal Adaptation in Architecture: Tehran: University of Tehran Press. (In Persian).
Javed. Saqib, Lechner. Roman, Behrens. Jan. (2016). Testing and Validation of TEKNOsim: A Building Energy Simulation Program, In Proceedings of the Twelfth World Congress REHVA (Clima 2016).
Koch-Nielsen, Holger. (2013). Stay cool: a design guide for the built environment in hot climates: Routledge. (In Persian).
Landolfi, Roberto, & Nicolella, Maurizio. (2022). Durability assessment of ETICS: Comparative evaluation of different insulating materials. Sustainability, 14(2), 980. DOI: 10.3390/su14020980
Lu, Yihang, Hu, Jun, & Zhong, Ke. (2022). An approximate parametric model for quantifying the thermal mass with harmonic variation of outdoor air temperature. Journal of Building Engineering, 50, 104195. DOI: 10.1016/j.jobe.2022.104195
Mansoureh, Tahbaz. (2017). Climatic Knowledge Climatic Design: University Of Shahid Beheshti. (In Persian).
Mavromatidis, Lazaros Elias, Mankibi, Mohamed EL, Michel, Pierre, & Santamouris, Mat. (2012). Numerical estimation of time lags and decrement factors for wall complexes including Multilayer Thermal Insulation, in two different climatic zones. Applied Energy, 92, 480-491. DOI: 10.1016/j.apenergy.2011.10.007
Mohammad, Shaghaig. (2013). Study of thermal behavior of common wall materials. case study: Tehran residential buildings. Journal of Fine Arts-Architecture and Urban Development, 18(1), 69-78. (In Persian).
Moslehi, Hamed, Abdulhirizi, Rana, Zulfiqari. Alireza, Ebrahimghani. (2016). Design And Load Calculations Of Mechanical Installations Builder Design: Noavar. (In Persian).
Pekdogan, Tugce, & Basaran, Tahsin. (2017). Thermal performance of different exterior wall structures based on wall orientation. Applied Thermal Engineering, 112, 15-24. DOI: 10.1016/j.applthermaleng.2016.10.068
Qabadian, Vahid. (1994). Climatic analysis Of Iran's Traditional Buildings: Tehran University. (In Persian).
Regulations, Office Of National Building. (2020). Chapter 19 of National Building. (In Persian).
Reilly, Aidan, & Kinnane, Oliver. (2017). The impact of thermal mass on building energy consumption. Applied Energy, 198, 108-121. DOI: 10.1016/j.apenergy.2017.04.024
Rodrigues, Eugénio, Fereidani, Nazanin Azimi, Fernandes, Marco S, & Gaspar, Adélio R. (2023). Climate change and ideal thermal transmittance of residential buildings in Iran. Journal of Building Engineering, 74, 106919.DOI: 10.1016/j.jobe.2023.106919
Rodrigues, Eugenio, Fernandes, Marco S, Gaspar, Adelio Rodrigues, Gomes, Alvaro, & Costa, Jose J. (2019). Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass. Applied Energy, 252, 113437. DOI: 10.1016/j.apenergy.2019.113437
Sadati, Seyed Esmaeil, Rahbar, Nader, & Kargarsharifabad, Hadi. (2023). Energy assessment, economic analysis, and environmental study of an Iranian building: The effect of wall materials and climatic conditions. Sustainable Energy Technologies and Assessments, 56, 103093. DOI: 10.1016/j.seta.2023.103093
Sharifian-Qazijehani, Helen. (2016). Investigating The Effect Of Thermal Mass Of Common Materials In the Construction Of External Walls Of Buildings In Reducing The Energy Consumption Of Tabriz Buildings. International Conference On Architecture, Civil Engineering And Urban Development In The Third Millennium. (In Persian).
Simões, I, Simões, N, & Tadeu, A. (2012). Thermal delay simulation in multilayer systems using analytical solutions. Energy and buildings, 49, 631-639. DOI: 10.1016/j.enbuild.2012.03.005
Sokhdan Sorkhabi, Zahra, Khanmohammadi, Mohammad Ali. . (2016). Optimizing The Energy Performance Of Non-Opening Walls In Sunny Fronts. Hoviatshahr, 23 73-82. (In Persian).