Achieving a housing construction pattern and density commensurate with the water conservation approach in comparison to two climates, low rainfall, and high rainfall

Document Type : Research Article

Authors

1 Architecture, Faculty of Art and Architecture, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 Architecture, Faculty of Art and Architecture, University of Science and Technology, Tehran, Iran.

Abstract

Due to the shortage of drinking water and also the increase in demand for water resources due to population growth, many cities in Iran face difficulties in the water supply. Water conservation strategies that include water accumulation, Water regeneration, water management, and water storage for drinking and non-drinking purposes are practical ways to reduce the growing water supply crisis for citizens. Therefore, the construction model of housing and density must be such that it is also optimal in terms of water protection. In this article, samples were selected based on the proposed housing construction models of Yazd master plan with low rainfall climate and then two samples in Sari and Gorgan cities as rainfall areas and quantitatively, the amount of rainwater storage And gray water reduction was calculated. The results of the evaluations show that in a city like Yazd, the demand for water decreases by about 57% and in rainy cities by about 70%. . In cities with adequate rainfall due to the cost of water reclamation, the water conservation approach can be reached by emphasizing the rainwater collection strategy (for example, in Gorgan 13.12% and in Sari 15.61% of the annual water needs of residents from rainfall can be provided Is ). However, in Yazd, where the volume of rainwater is not significant (Less than one percent consumption), the water reclamation strategy is more effective, so the water protection approach is to reduce the costs of rehabilitation, increase the number of people per hectare and create more building density. An appropriate model for housing construction Creating water storage use in housing design (changing the composition of housing spaces), creating right-angled houses to create more density, integrated and centralized housing plans, and reforming the policies of comprehensive urban plans in Yazd that reduce The density increased from 127 people per hectare in 1335 to 32.8 people per hectare in 2016. A suitable model for housing construction and density in the cities of Gorgan and Sari, unlike the city of Yazd, is the design of decentralized settlements and the reduction of the relative density of population and people per hectare, and the increase of land per capita.

Keywords


  • ببران، صدیقه. (1392). بحران وضعیت آب در ایران و جهان، مرکز اطلاعات استراتژیک ایران.
  • رشیدی مهرآبادی، محمد حسین؛ ثقفیان، بهرام؛ صادقیان، محمد صادق. (1388). مقاله ارزیابی عملکرد سطوح آبگیر پشت بام ساختمان های مسکونی در تامین نیاز غیر شرب ساکنین در شهر های ساحلی کشور، مجله ی مهندسی منابعآب، سال ششم، زمستان 1392، 15-1.
  • زنگنه مدار، زهرا؛ کاظمی، فاطمه؛ میرزایی، عمار. (1388). تصفیه خانه و نقش آن در کاهش مصرف آب، مجله علمی دانشجویان دانشکده مهندسی عمران دانشگاه شریف،شماره 38 بهار 1388، 25-22.
  • سایت سازمان آب و فاظلاب شهری یزد ( abfayazd.ir).
  • سایت سازمان هواشناسی (irimo.ir ) .
  • ضیایی، فرناز؛ عباسی هرفته، محسن. (1397). تاثیر نوع سیستم ساختمانی بر میزان آب مصرفی ساخت و ساز در مسکن عرفی معاصر یزد، نشریه معماری اقلیم گرم و خشک، سال ششم، شماره هشتم، پاییز وزمستان 1397، 21-2.
  • طرح جامع مسکن استان گلستان (1391) مهندسان مشاور بافت بهستان.
  • طرح جامع مسکن یزد (1388) مهندسین مشاور معماری و شهرسازی عرصه.
  • فرزی، ابوالفضل ؛ مهرآبادی، جعفر (1398). مقاله تحلیل نظام یافته نقاط قوت ، نقاط ضعف ، فرصت ها و تهدید های مربوط به استفاده مجدد در محل آب خاکستری مبتنی بر فرآیند تحلیل سلسله مراتبی فازی-مطالعه موردی ایران . تخقیقات منابع آب ایران. سال پانزدهم شماره 4 ، 339 –
  • کسمایی، مرتضی. (1395). اقلیم ومعماری، انتشارات نشرخاک.
  • مرزبان، حسین؛ صدرایی جواهری، احمد؛ زیبایی، منصور؛ ناظم السادات، سید محمد جعفر؛ کریمی، لیلا. (1398). بررسی وضعیت منابع و مصارف آب در ایران و راهکارهای بهبود وضعیت، مجله آب و فاضلاب،دوره30، شماره 4 ، 32-16 .
  • مهدوی، محمد. (1392). هیدرولوژی کاربردی، جلد دوم، انتشارات دانشگاه تهران.
  • نجومی سیاهمرد، سمانه؛ شفیعی ثابت، بهنام؛ جنت رستمی، سمیه. (1398). بهینه سازی مخازن ذخیره سازی آب باران  جمع آوری شده از بام ساختمان ها ( مطالعه موردی : شهر یزد ). تحقیقات منابع آب ایران. سال 15 شماره 4، 241-227.
  • Abdulla, F.A., and W. AL-Shareef. 2009. Roof rainwater harvesting systems for household water supply in Jordan. J. Desalin. 243,195-207.
  • Allen, L., Christian-Smith, J., & Palaniappan, M. (2010). Overview of greywater reuse: the potential of greywater systems to aid sustainable water management. Oakland: Pacific Institute.
  • Bardham, S. (2011). Assessment of water resource consumption in building construction in India. Ecosystems and Sustainable Development. 3(144), 93-102.
  • Church, J., Verbyla, M.E., Lee, W.H., Randall, A.A., Amundsen, T.J., & Zastrow, D.J. (2015) Dishwashing water recycling system and related water quality standards for military use. Science of the Total Environment. 529, 275-284.
  • De Gois, E.H., Rios, C.A., & Costanzi, R.N. (2015). Evaluation of water conservation and reuse: a case study of shopping mall in southern Brazil. Journal of Cleaner Production. 96, 263-271.
  • Eroksuz, E., and A. Rahman. 2010. Rainwater tanks in multi-unit buildings: A case study for three Australian cities. J. Resour. Conserv. Recycl. 54: 1449-1452.
  • Grondzik, W. T., & Kwok, A. G., (2015). Mechanical and electrical equipment for buildings. 12th, Hobken, New Jersey: Wiley.
  • Ghisi, E., D.L. Bressan, and M. Martini. 2007. Rainwater tank capacity and potential for potable water savings by using rainwater in the residential sector of southeastern Brazil. Environ. 32, 1654-1666.
  • Imteaz, M.A., A. Shanableh, A. Rahman, and A. Ahsan. 2011 (a). Optimization of rainwater tank design from large roofs: A case study in Melbourne, Australia. J. Resour. Conserv. Recycl. 55, 1022-1029.
  • Imteaz, M.A., A. Ahsan, J. Naser, and A.Rahman. 2011 (b). Reliability analysis of rainwater tank in Melbourne using daily water balance model. J. Resour. Conserv. Recycl. 56, 80-86.
  • Kahinda, J.M., A.E. Taighenu, and J.R. Boroto. 2007. Domestic rainwater harvesting to improve water supply in rural South Africa. J. Phys. Chem. Earth. 32, 1050-1057.
  • Mun, J. S., & Han, M. Y. (2012). Design and operational parameters of a rooftop rainwater harvesting system: definition, sensitivity and verification. Journal of Environmental Management. 93(1), 147-153.
  • Okoye, C. O., Solyalı, O., & Akıntuğ, B. (2015). Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach. Resources, conservation and recycling. 104, 131-140.
  • Oron, G., Adel, M., Agmon, V., Friedler, E., Halperin, R., Leshem, E., & Weinberg, D. (2014). Greywater use in Israel and worldwide: standards and prospects. Water research. 58, 92-101.
  • Rashidi Mehrabadi, M.H., B. Saghafian, and F. Haghighi Fashi. 2013. Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate condition. J. Resour. Conserv. Recycl. 73, 86-93.
  • Rezaee, M., & Sarrafzadeh, M. H. (2017). Challenges and opportunities for wastewater reuse in municipal consumptions: a case study in Tehran metropolis. Iran-Water Resources Research, 12(4), 36-49.
  • Rohani Farahmand, A., & Tizghadam Ghazani, M. (2017). Economic and technical investigation of grey water reuse in high-Rise buildings in Iran. Journal of Water and Wastewater; Ab va Fazilab, 28(3), 13-22.
  • Song, J., M. Han, T. Kim, and J. Song 2008. Rainwater harvesting as a sustainable water supply option in Banda Aceh. J. Desalin. 248,233-240.
  • Sturm, M., M. Zimmermann. K.Schutz, W. Urban, and H. Hartung. Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia. J. Phys. Chem. Earth. 34, 776-785.
  • Shamabadi, N., Bakhtiari, H., Kochakian, N., & Farahani, M. (2015). The investigation and designing of an onsite grey water treatment systems at Hazrat-e-Masoumeh University, Qom, IRAN. Energy Procedia. 74, 1337-1346.
  • Zaragoza, G., Buchholz, M., Jochum, P., & Pérez-Parra, J. (2007). Watergy project: Towards a rational use of water in greenhouse agriculture and sustainable architecture. Desalination. 211(1-3), 296-303.