The Role of Influential Factors in the Possibility of Human Thermal Comfort in Historical Texture of Kashan

Document Type : Research Article

Authors

1 Architecture Department, Engineering Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

2 Architecture Departmant, Engineering Faculty, University of Ilam, Ilam, Iran.

3 Architecture Departmant, Engineering Faculty, University of Kashan, Kashan, Iran.

Abstract

Abstract
The overwhelming qualities cultural and local values of architectural sights in kashan historical textures is the main reason for the presence and the activities of their inhabitants in thermal comfort. The continuation of life the sheer variety of energy & activity in its historical texture have made possible the presence of a large population in the open-air & semi-open-space of this place. This situation-the existence of such spaces in the neighboring buildings-as well as the architectural beauty & variety have made assessment of human thermal comfort a necessity. This research first studies & assessed the range of human thermal comfort via the index physiological equivalent temperature (PET) and second presents a new method to predict the function of operative variables in the possibility of human thermal comfort. For this purpose 17 sites or locations in the historical texture were examined from Shahrivar 6th to Shahrivar 21th in 1397. In addition to library study, cultural presence in these textures, field study, the response of 778 people among the inhabitants and tourists to the questionnaires as well as climate data were simultaneously obtained. At the next stage after the estimation of dress rate through Delta log 70 software (PET) range by Ray Man software were determined. Consequently the data was analyzed by Spss 24 software. Our findings show that the respondents felt thermal comfort between 24.07 to 31.21centigrade (PET). It is also worth mentioning that the obtained results from estimating at structural equation model indicates that through the examination of two variables-checking the weather conditions and previous visits history one com predict the possibility of human thermal comfort up to %925.

Keywords


-آزادخانی، پاکزاد و کارن فتاحی و احمد عباسپور.(1399). بررسی نقش معماری در کاهش اثرهای محیط زیستی در مجتمع‌‌های مسکونی شهر ایلام با رویکرد معماری پایدار. مهندسی ساختمان و علوم مسکن, 13(24), 1-8.
ـ عمادیان رضوی، سیده زینب.(1397). ارزیابی عملکرد حرارتی بناهای زمین پناه در مواقع سرد سال (نمونه موردی: اقلیم گرم و خشک یزد). معماری اقلیم گرم و خشک, 6(7), 85-99.
ـ هاشمی رفسنجانی، فاطمه السادات و شاهین حیدری.(1397). ارزیابی آسایش حرارتی تطبیقی در خانه های مسکونی اقلیم گرم و خشک مطالعه موردی: استان کرمان. معماری اقلیم گرم و خشک, 6(7), 43-65.
ـ برزگر، زهرا و شاهین حیدری.(1396). بررسی نقش عمق و سایه ورودی خانه های سنتی در تأمین آسایش حرارتی بیرونی-نمونه موردی: بافت قدیم شهر شیراز. معماری اقلیم گرم و خشک, 5(5), 21-32.
ـ فتاحی، کارن و اسفندیار محمدی.(1399). شناسایی موانع گردشگر پذیری روستای هدف گردشگری حیدرآباد سیوان. فصلنامه جغرافیا و توسعه, 18(59), 211-226.
ـ فرخی، مریم و محمد سعید ایزدی و مهرداد کریمی مشاور.(1397). تحلیل کارایی انرژی در مدل‌های بافت شهری اقلیم گرم و خشک، نمونۀ موردی: شهر اصفهان. مطالعات معماری ایران, 1(13), 127-147.
ـ کرد جمشیدی، ماریا.(1399). ارائه تیپولوژی معماری مسکونی با رویکرد بهسازی عملکرد حرارتی مسکن در شهر بابلسر. نشریه علمی معماری و شهرسازی ایران. 19 (11)، 95-114.
ـ شهابی نژاد، علی و رضا ابویی و محمود قلعه نوعی و فرهنگ مظفر.(1393). مقیاس انسانی در میدان نقش جهان اصفهان. دو فصلنامه علمی- پژوهشی مرمت و معماری ایران، سال4(8)، 1-18.
ـ مجیدی، فاطمه السادات و شاهین حیدری و محمود قلعه نویی و مریم قاسمی سیچانی.(1398). رزیابی و مقایسۀ آسایش حرارتی در محلات مسکونی شهر اصفهان (مطالعۀ موردی: محلات علی‌قلی‌آقا و دشتستان). مطالعات معماری ایران, 1(15), 47-64.
ـ شهابی نژاد، علی و رضا ابویی و محمود قلعه نوعی .(1395). آسایش اقلیمی در میدان نقش جهان. فصلنامه مطالعات شهر ایرانی اسلامی، 7(25)، 5-16.
ـ شهابی نژاد، علی و رضا ابویی و محمود قلعه نوعی .(1395). فضای باز میدان نقش جهان: ارزش ها و مسئله ها. فصلنامه باغ نظر، سال 13(44)، 53-64.
ـ قدیری مقدم، مهسا و وحید وزیری و هانیه صنایعیان و حجت اله رشید کلویر.(1398). ارزیابی عملکرد سیستم های ایستای انرژی (دیوار ترومپ و پدیده گلخانه ای) بر میزان مصرف انرژی ساختمان در اقلیم سرد. نشریه علمی معماری و شهرسازی ایران.1398، 17(10)، 25-36.
ـAkkurt, G., Aste, N., Borderon, J., Buda, A., Calzolari, M., Chung, D., . . . Huerto-Cardenas, H. (2020). Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions. Renewable and Sustainable Energy Reviews, 109-118.
ـASHRAE. (2013). thermal environmental conditions for human occupancy, ashrae, atlanta, ga,2013. ANSI/ASHRAE Standard ashrae 55.
ـAyçam, İ., Akalp, S., & Görgülü, L. S. (2020). The Application of Courtyard and Settlement Layouts of the Traditional Diyarbakır Houses to Contemporary Houses: A Case Study on the Analysis of Energy Performance. Energies, 13(3), 587.
ـCastaldo, V. L., Rosso, F., Golasi, I., Piselli, C., Salata, F., Pisello, A. L., . . . de Lieto Vollaro, A. (2017). Thermal comfort in the historical urban canyon: The effect of innovative materials. Energy Procedia, 134, 151-160.
ـChatzidimitriou, A., & Yannas, S. (2016). Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustainable Cities and Society, 26, 27-47.
ـChiesura, A. (2004). The role of urban parks for the sustainable city. Landscape and Urban Planning, 68(1), 129-138.
ـCoccolo, S., Kämpf, J., Scartezzini, J.-L., & Pearlmutter, D. (2016). Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 18, 33-57.
ـde Dear, R., & Fountain, M. (1994). Field experiments on occupant comfort and office thermal environments in a hot-humid climate. 36, 48-56. 
ـDu, X., Bokel, R., & van den Dobbelsteen, A. (2014). Building microclimate and summer thermal comfort in free-running buildings with diverse spaces: A Chinese vernacular house case. Building and environment, 82, 215-227.
ـFahmy, M., & Sharples, S. (2009). On the development of an urban passive thermal comfort system in Cairo, Egypt. Building and environment, 44(9), 1907-1916.
ـFang, Z., Feng, X., Xu, X., Zhou, X., Lin, Z., & Ji, Y. (2019). Investigation into outdoor thermal comfort conditions by different seasonal field surveys in China, Guangzhou. International journal of biometeorology, 63(10), 1357-1368.
ـHadianpour, M., Mahdavinejad, M., Bemanian, M., & Nasrollahi, F. (2018). Seasonal differences of subjective thermal sensation and neutral temperature in an outdoor shaded space in Tehran, Iran. Sustainable Cities and Society, 39, 751-764.
ـHatipoglu, H. K. (2017). Understanding Social Sustainability in Housing Form the Case Study" Wohnen Mit Uns" in Vienna and Adaptibility to Turkey. Iconarp International Journal of Architecture and Planning, 5(1), 87-109.
ـHöppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of biometeorology, 43(2), 71-75.
ـHuang, Z., Cheng, B., Gou, Z., & Zhang, F. (2019). Outdoor thermal comfort and adaptive behaviors in a university campus in China's hot summer-cold winter climate region. Building and environment, 165, 106-114.
ـKumar, P., & Sharma, A. (2020). Study on importance, procedure, and scope of outdoor thermal comfort–A review. Sustainable Cities and Society, 102297. 41, 18-36. 
ـLai, D., Guo, D., Hou, Y., Lin, C., & Chen, Q. (2014). Studies of outdoor thermal comfort in northern China. Building and environment, 77, 110-118.
ـLehmann, I., Mathey, J., Rößler, S., Bräuer, A., & Goldberg, V. (2014). Urban vegetation structure types as a methodological approach for identifying ecosystem services–Application to the analysis of micro-climatic effects. Ecological Indicators, 42, 58-72.
ـLin, T.-P., Matzarakis, A., & Hwang, R.-L. (2010). Shading effect on long-term outdoor thermal comfort. Building and environment, 45(1), 213-221.
ـManavvi, S., & Rajasekar, E. (2020). Semantics of outdoor thermal comfort in religious squares of composite climate: New Delhi, India. International journal of biometeorology, 64(2), 253-264.
ـMartínez-Molina, A., Tort-Ausina, I., Cho, S., & Vivancos, J.-L. (2016). Energy efficiency and thermal comfort in historic buildings: A review. Renewable and Sustainable Energy Reviews, 61, 70-85.
ـMatzarakis, A., & Mayer, H. (1991). The extreme heat wave in Athens in July 1987 from the point of view of human biometeorology. Atmospheric Environment. Part B. Urban Atmosphere, 25(2), 203-211.
ـMatzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43(2), 76-84.
ـMayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and Applied Climatology. 38, 43-49. 
ـMorille, B., & Musy, M. (2017). Comparison of the Impact of Three Climate Adaptation Strategies on Summer Thermal Comfort–Cases Study in Lyon, France. Procedia Environmental Sciences, 38, 619-626.
ـNasrollahi, N., Hatami, M., Khastar, S. R., & Taleghani, M. (2017). Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate. Sustainable Cities and Society, 35, 449-467.
ـNasrollahi, N., Hatami, Z., & Taleghani, M. (2017). Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan. Building and environment, 125, 356-372.
ـNematchoua, M. K., Orosa, J. A., & Reiter, S. (2019). Life cycle assessment of two sustainable and old neighbourhoods affected by climate change in one city in Belgium: A review. Environmental Impact Assessment Review, 78, 106-112.
ـOke, T. R. (2006). Towards better scientific communication in urban climate. Theoretical and Applied Climatology, 84(1-3), 179-190.
ـRuiz, M. A., Sosa, M. B., Correa, E. N., & Cantón, M. A. (2017). Design tool to improve daytime thermal comfort and nighttime cooling of urban canyons. Landscape and Urban Planning, 167, 249-256.
ـSalata, F., Golasi, I., de Lieto Vollaro, A., & de Lieto Vollaro, R. (2015). How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy and Buildings, 99, 32-49.
ـSalata, F., Golasi, I., de Lieto Vollaro, R., & de Lieto Vollaro, A. (2016). Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Building and environment, 96, 46-61.
ـSalata, F., Golasi, I., Petitti, D., de Lieto Vollaro, E., Coppi, M., & de Lieto Vollaro, A. (2017). Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and Society, 30, 79-96.
ـXu, X., Sun, S., Liu, W., García, E. H., He, L., Cai, Q., . . . Zhu, J. (2017). The cooling and energy saving effect of landscape design parameters of urban park in summer: A case of Beijing, China. Energy and Buildings. 26, 27-47. 
ـYu, Z., Guo, X., Jørgensen, G., & Vejre, H. (2017). How can urban green spaces be planned for climate adaptation in subtropical cities? Ecological Indicators, 82, 152-162.